Almost-catalytic Computation

Sagar Bisoyi, Krishnamoorthy Dinesh, Bhabya Deep Rai, Jayalal Sarma
{"title":"Almost-catalytic Computation","authors":"Sagar Bisoyi, Krishnamoorthy Dinesh, Bhabya Deep Rai, Jayalal Sarma","doi":"arxiv-2409.07208","DOIUrl":null,"url":null,"abstract":"Designing algorithms for space bounded models with restoration requirements\non the space used by the algorithm is an important challenge posed about the\ncatalytic computation model introduced by Buhrman et al. (2014). Motivated by\nthe scenarios where we do not need to restore unless is useful, we define\n$ACL(A)$ to be the class of languages that can be accepted by almost-catalytic\nTuring machines with respect to $A$ (which we call the catalytic set), that\nuses at most $c\\log n$ work space and $n^c$ catalytic space. We show that if there are almost-catalytic algorithms for a problem with\ncatalytic set as $A \\subseteq \\Sigma^*$ and its complement respectively, then\nthe problem can be solved by a ZPP algorithm. Using this, we derive that to\ndesign catalytic algorithms, it suffices to design almost-catalytic algorithms\nwhere the catalytic set is the set of strings of odd weight ($PARITY$). Towards\nthis, we consider two complexity measures of the set $A$ which are maximized\nfor $PARITY$ - random projection complexity (${\\cal R}(A)$) and the subcube\npartition complexity (${\\cal P}(A)$). By making use of error-correcting codes, we show that for all $k \\ge 1$,\nthere is a language $A_k \\subseteq \\Sigma^*$ such that $DSPACE(n^k) \\subseteq\nACL(A_k)$ where for every $m \\ge 1$, $\\mathcal{R}(A_k \\cap \\{0,1\\}^m) \\ge\n\\frac{m}{4}$ and $\\mathcal{P}(A_k \\cap \\{0,1\\}^m)=2^{m/4}$. This contrasts the\ncatalytic machine model where it is unclear if it can accept all languages in\n$DSPACE(\\log^{1+\\epsilon} n)$ for any $\\epsilon > 0$. Improving the partition complexity of the catalytic set $A$ further, we show\nthat for all $k \\ge 1$, there is a $A_k \\subseteq \\{0,1\\}^*$ such that\n$\\mathsf{DSPACE}(\\log^k n) \\subseteq ACL(A_k)$ where for every $m \\ge 1$,\n$\\mathcal{R}(A_k \\cap \\{0,1\\}^m) \\ge \\frac{m}{4}$ and $\\mathcal{P}(A_k \\cap\n\\{0,1\\}^m)=2^{m/4+\\Omega(\\log m)}$.","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Designing algorithms for space bounded models with restoration requirements on the space used by the algorithm is an important challenge posed about the catalytic computation model introduced by Buhrman et al. (2014). Motivated by the scenarios where we do not need to restore unless is useful, we define $ACL(A)$ to be the class of languages that can be accepted by almost-catalytic Turing machines with respect to $A$ (which we call the catalytic set), that uses at most $c\log n$ work space and $n^c$ catalytic space. We show that if there are almost-catalytic algorithms for a problem with catalytic set as $A \subseteq \Sigma^*$ and its complement respectively, then the problem can be solved by a ZPP algorithm. Using this, we derive that to design catalytic algorithms, it suffices to design almost-catalytic algorithms where the catalytic set is the set of strings of odd weight ($PARITY$). Towards this, we consider two complexity measures of the set $A$ which are maximized for $PARITY$ - random projection complexity (${\cal R}(A)$) and the subcube partition complexity (${\cal P}(A)$). By making use of error-correcting codes, we show that for all $k \ge 1$, there is a language $A_k \subseteq \Sigma^*$ such that $DSPACE(n^k) \subseteq ACL(A_k)$ where for every $m \ge 1$, $\mathcal{R}(A_k \cap \{0,1\}^m) \ge \frac{m}{4}$ and $\mathcal{P}(A_k \cap \{0,1\}^m)=2^{m/4}$. This contrasts the catalytic machine model where it is unclear if it can accept all languages in $DSPACE(\log^{1+\epsilon} n)$ for any $\epsilon > 0$. Improving the partition complexity of the catalytic set $A$ further, we show that for all $k \ge 1$, there is a $A_k \subseteq \{0,1\}^*$ such that $\mathsf{DSPACE}(\log^k n) \subseteq ACL(A_k)$ where for every $m \ge 1$, $\mathcal{R}(A_k \cap \{0,1\}^m) \ge \frac{m}{4}$ and $\mathcal{P}(A_k \cap \{0,1\}^m)=2^{m/4+\Omega(\log m)}$.
几乎催化的计算
为有空间约束的模型设计算法,并对算法使用的空间提出还原要求,是 Buhrman 等人(2014)提出的催化计算模型面临的一个重要挑战。在我们不需要还原除非有用的场景的激励下,我们将$ACL(A)$定义为可以被关于$A$(我们称之为催化集)的近乎催化图灵机所接受的语言类,该类语言最多使用$c\log n$工作空间和$n^c$催化空间。我们证明,如果一个问题的催化集分别为 $A \subseteq \Sigma^*$ 及其补集,那么这个问题就可以用 ZPP 算法来解决。利用这一点,我们得出,要设计催化算法,只需设计几乎催化的算法即可,其中催化集是奇数权重的字符串集($PARITY$)。为此,我们考虑了针对 $PARITY$ 而最大化的集合 $A$ 的两个复杂度度量--随机投影复杂度(${\cal R}(A)$)和子分区复杂度(${\cal P}(A)$)。通过使用纠错码,我们证明了对于所有 $k \ge 1$,存在一种语言 $A_k \subseteq \Sigma^*$ ,使得 $DSPACE(n^k) \subseteqACL(A_k)$ 其中对于每 $m \ge 1$、$\mathcal{R}(A_k \cap \{0,1\}^m) \ge\frac{m}{4}$ 和 $\mathcal{P}(A_k \cap \{0,1\}^m)=2^{m/4}$ 。这与催化机器模型形成了鲜明对比,在催化机器模型中,对于任何$\epsilon > 0$的语言,它是否能接受$DSPACE(\log^{1+\epsilon} n)$中的所有语言还不清楚。为了进一步提高催化集 $A$ 的分割复杂度,我们证明对于所有 $k \ge 1$,存在一个 $A_k \subseteq \{0、1}^*$ such that$mathsf{DSPACE}(\log^k n)\subseteq ACL(A_k)$ where for every $m \ge 1$,$\mathcal{R}(A_k \cap\{0,1\}^m) \ge \frac{m}{4}$ and $\mathcal{P}(A_k \cap\{0,1\}^m)=2^{m/4+\Omega(\log m)}$.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信