Growth properties of Hartley transform via moduli of continuity

IF 0.9 3区 数学 Q2 MATHEMATICS
Nurbek Kakharman, Niyaz Tokmagambetov
{"title":"Growth properties of Hartley transform via moduli of continuity","authors":"Nurbek Kakharman, Niyaz Tokmagambetov","doi":"10.1007/s11868-024-00628-9","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the relationship between the moduli of continuity of a function and its Hartley transform. We explore this connection by deriving significant results such as the Riemann–Lebesgue lemma, Parseval’s theorem, and the Hausdorff–Young inequality for the Hartley transform in both the Euclidean space and torus. Using a translation operator, we obtain an analog of Titchmarsh’s theorem for the Hartley transform. In addition, we extend our analysis to the Hartley series on the torus.</p>","PeriodicalId":48793,"journal":{"name":"Journal of Pseudo-Differential Operators and Applications","volume":"36 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pseudo-Differential Operators and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11868-024-00628-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the relationship between the moduli of continuity of a function and its Hartley transform. We explore this connection by deriving significant results such as the Riemann–Lebesgue lemma, Parseval’s theorem, and the Hausdorff–Young inequality for the Hartley transform in both the Euclidean space and torus. Using a translation operator, we obtain an analog of Titchmarsh’s theorem for the Hartley transform. In addition, we extend our analysis to the Hartley series on the torus.

通过连续性模量实现哈特里变换的增长特性
本研究探讨了函数的连续性模量与其哈特利变换之间的关系。我们通过推导重要结果,如黎曼-莱伯斯格(Riemann-Lebesgue)lemma、帕赛瓦尔(Parseval)定理,以及欧几里得空间和环空间中哈特利变换的豪斯多夫-杨不等式,来探索这种联系。利用平移算子,我们得到了哈特利变换的蒂奇马什定理。此外,我们还将分析扩展到了环上的哈特里级数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
59
期刊介绍: The Journal of Pseudo-Differential Operators and Applications is a forum for high quality papers in the mathematics, applications and numerical analysis of pseudo-differential operators. Pseudo-differential operators are understood in a very broad sense embracing but not limited to harmonic analysis, functional analysis, operator theory and algebras, partial differential equations, geometry, mathematical physics and novel applications in engineering, geophysics and medical sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信