On the Complexity of Local-Equitable Coloring in Claw-Free Graphs with Small Degree

IF 0.6 4区 数学 Q3 MATHEMATICS
Zuosong Liang
{"title":"On the Complexity of Local-Equitable Coloring in Claw-Free Graphs with Small Degree","authors":"Zuosong Liang","doi":"10.1007/s00373-024-02826-0","DOIUrl":null,"url":null,"abstract":"<p>An <i>equitable </i><i>k</i><i>-partition </i>(<span>\\(k\\ge 2\\)</span>) of a vertex set <i>S</i> is a partition of <i>S</i> into <i>k</i> subsets (may be empty sets) such that the sizes of any two subsets of <i>S</i> differ by at most one. A <i>local-equitable k-coloring </i>(<span>\\(k\\ge 2\\)</span>) of <i>G</i> is an assignment of <i>k</i> colors to the vertices of <i>G</i> such that, for every maximal clique <i>H</i> of <i>G</i>, the coloring on <i>H</i> forms an equitable <i>k</i>-partition of <i>H</i>. Local-equitable coloring of graphs is a generalization of the proper vertex coloring of graphs and also a stronger version of clique-coloring of graphs. Claw-free graphs with maximum degree four are proved to be 2-clique-colorable [Discrete Math. Theoret. Comput. Sci. 11 (2) (2009), 15–24] but not necessary local-equitably 2-colorable. In this paper, given a claw-free graph <i>G</i> with maximum degree at most four, we present a linear time algorithm to give a local-equitable 2-coloring of <i>G</i> or decide that <i>G</i> is not local-equitably 2-colorable. As a corollary, we get that claw-free perfect graphs with maximum degree at most four are local-equitably 2-colorable.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02826-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

An equitable k-partition (\(k\ge 2\)) of a vertex set S is a partition of S into k subsets (may be empty sets) such that the sizes of any two subsets of S differ by at most one. A local-equitable k-coloring (\(k\ge 2\)) of G is an assignment of k colors to the vertices of G such that, for every maximal clique H of G, the coloring on H forms an equitable k-partition of H. Local-equitable coloring of graphs is a generalization of the proper vertex coloring of graphs and also a stronger version of clique-coloring of graphs. Claw-free graphs with maximum degree four are proved to be 2-clique-colorable [Discrete Math. Theoret. Comput. Sci. 11 (2) (2009), 15–24] but not necessary local-equitably 2-colorable. In this paper, given a claw-free graph G with maximum degree at most four, we present a linear time algorithm to give a local-equitable 2-coloring of G or decide that G is not local-equitably 2-colorable. As a corollary, we get that claw-free perfect graphs with maximum degree at most four are local-equitably 2-colorable.

Abstract Image

论小度无爪图中局部公平着色的复杂性
顶点集 S 的公平 k 分区(\(k\ge 2\))是将 S 分割成 k 个子集(可以是空集),使得 S 的任意两个子集的大小最多相差一个。G 的局部公平 k 着色(\(k\ge 2\))是给 G 的顶点分配 k 种颜色,对于 G 的每个最大簇 H,H 上的着色形成 H 的公平 k 分区。最大阶数为四的无爪图已被证明是 2-clique-colorable[《离散数学理论与计算科学》11 (2) (2009), 15-24],但不一定是局部公平 2-colorable。在本文中,给定一个最大度最多为四的无爪图 G,我们提出了一种线性时间算法,用于给出 G 的局部公平 2-着色或判定 G 不是局部公平 2-着色。作为推论,我们得到最大阶数为四的无爪完美图是局部公平 2 色的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Graphs and Combinatorics
Graphs and Combinatorics 数学-数学
CiteScore
1.00
自引率
14.30%
发文量
160
审稿时长
6 months
期刊介绍: Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信