{"title":"Influence of typical elements and heat treatment parameters on hardenability in steel: a review","authors":"Bin-bin Wang, De-xin Zhu, Chao-lei Zhang, Xiao-ye Zhou, Hong-hui Wu, Shui-ze Wang, Gui-lin Wu, Jun-heng Gao, Hai-tao Zhao, Xin-ping Mao","doi":"10.1007/s42243-024-01307-1","DOIUrl":null,"url":null,"abstract":"<p>The hardenability of steel is crucial for its durability and performance in engineering applications, significantly influencing mechanical properties such as hardness, strength, and wear resistance. As the engineering field continuously demands higher-performance steel materials, a deep understanding of the key influencing factors on hardenability is crucial for developing quality steel that meets stringent application requirements. The effects of some specific elements, including carbon (C), vanadium (V), molybdenum (Mo), and boron (B), as well as heat treatment process parameters such as austenitizing temperature, austenitizing holding time, and cooling rate, were examined. It aims to elucidate the interactions among these factors and their influence on steel hardenability. For each influencing factor, the heat treatment procedure, characteristic microstructure resulting from it, and corresponding Jominy end quench curves were discussed. Furthermore, based on the continuous development of big data technology in the field of materials, the use of machine learning to predict the hardenability of steel and guide the design of steel material was also introduced.</p>","PeriodicalId":16151,"journal":{"name":"Journal of Iron and Steel Research International","volume":"39 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Iron and Steel Research International","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s42243-024-01307-1","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The hardenability of steel is crucial for its durability and performance in engineering applications, significantly influencing mechanical properties such as hardness, strength, and wear resistance. As the engineering field continuously demands higher-performance steel materials, a deep understanding of the key influencing factors on hardenability is crucial for developing quality steel that meets stringent application requirements. The effects of some specific elements, including carbon (C), vanadium (V), molybdenum (Mo), and boron (B), as well as heat treatment process parameters such as austenitizing temperature, austenitizing holding time, and cooling rate, were examined. It aims to elucidate the interactions among these factors and their influence on steel hardenability. For each influencing factor, the heat treatment procedure, characteristic microstructure resulting from it, and corresponding Jominy end quench curves were discussed. Furthermore, based on the continuous development of big data technology in the field of materials, the use of machine learning to predict the hardenability of steel and guide the design of steel material was also introduced.
期刊介绍:
Publishes critically reviewed original research of archival significance
Covers hydrometallurgy, pyrometallurgy, electrometallurgy, transport phenomena, process control, physical chemistry, solidification, mechanical working, solid state reactions, materials processing, and more
Includes welding & joining, surface treatment, mathematical modeling, corrosion, wear and abrasion
Journal of Iron and Steel Research International publishes original papers and occasional invited reviews on aspects of research and technology in the process metallurgy and metallic materials. Coverage emphasizes the relationships among the processing, structure and properties of metals, including advanced steel materials, superalloy, intermetallics, metallic functional materials, powder metallurgy, structural titanium alloy, composite steel materials, high entropy alloy, amorphous alloys, metallic nanomaterials, etc..