The splitting of the de Rham cohomology of soft function algebras is multiplicative

Igor Baskov
{"title":"The splitting of the de Rham cohomology of soft function algebras is multiplicative","authors":"Igor Baskov","doi":"arxiv-2408.08689","DOIUrl":null,"url":null,"abstract":"Let $A$ be a real soft function algebra. In arXiv:2208.11431 we have obtained\na canonical splitting $\\mathrm{H}^* (\\Omega ^\\bullet _{A|\\mathrm{R}}) \\cong\n\\mathrm{H} ^* (X,\\mathrm{R})\\oplus \\text{(something)}$ via the canonical maps\n$\\Lambda_A:\\mathrm{H} ^* (X,\\mathrm{R})\\to\\mathrm{H} ^* (\\Omega ^\\bullet\n_{A|\\mathrm{R}})$ and $\\Psi_A:\\mathrm{H} ^* (\\Omega ^\\bullet\n_{A|\\mathrm{R}})\\to\\mathrm{H} ^* (X,\\mathrm{R})$. In this paper we prove that\nthese maps are multiplicative.","PeriodicalId":501475,"journal":{"name":"arXiv - MATH - Commutative Algebra","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Commutative Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.08689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $A$ be a real soft function algebra. In arXiv:2208.11431 we have obtained a canonical splitting $\mathrm{H}^* (\Omega ^\bullet _{A|\mathrm{R}}) \cong \mathrm{H} ^* (X,\mathrm{R})\oplus \text{(something)}$ via the canonical maps $\Lambda_A:\mathrm{H} ^* (X,\mathrm{R})\to\mathrm{H} ^* (\Omega ^\bullet _{A|\mathrm{R}})$ and $\Psi_A:\mathrm{H} ^* (\Omega ^\bullet _{A|\mathrm{R}})\to\mathrm{H} ^* (X,\mathrm{R})$. In this paper we prove that these maps are multiplicative.
软函数代数的德拉姆同调分裂是乘法性的
让 $A$ 是一个实软函数代数。在 arXiv:2208.11431 中,我们得到了一个典型分裂 $\mathrm{H}^* (\Omega ^\bullet _{A|\mathrm{R}}) \cong\mathrm{H}^* (X,\mathrm{R})\oplus \text{(something)}$ via the canonical maps$\Lambda_A:\mathrm{H}^* (X,\mathrm{R})\to\mathrm{H}^* (\Omega ^\bullet_{A|\mathrm{R}})$ 和 $\Psi_A:\mathrm{H}^* (\Omega ^\bullet_{A|\mathrm{R}})\to\mathrm{H}^* (X,\mathrm{R})$.本文将证明这些映射是乘法映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信