Betti numbers and linear covers of points

Hailong Dao, Ben Lund, Sreehari Suresh-Babu
{"title":"Betti numbers and linear covers of points","authors":"Hailong Dao, Ben Lund, Sreehari Suresh-Babu","doi":"arxiv-2408.14064","DOIUrl":null,"url":null,"abstract":"We prove that for a finite set of points $X$ in the projective $n$-space over\nany field, the Betti number $\\beta_{n,n+1}$ of the coordinate ring of $X$ is\nnon-zero if and only if $X$ lies on the union of two planes whose sum of\ndimension is less than $n$. Our proof is direct and short, and the inductive\nstep rests on a combinatorial statement that works over matroids.","PeriodicalId":501475,"journal":{"name":"arXiv - MATH - Commutative Algebra","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Commutative Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.14064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that for a finite set of points $X$ in the projective $n$-space over any field, the Betti number $\beta_{n,n+1}$ of the coordinate ring of $X$ is non-zero if and only if $X$ lies on the union of two planes whose sum of dimension is less than $n$. Our proof is direct and short, and the inductive step rests on a combinatorial statement that works over matroids.
贝蒂数和点的线性盖
我们证明,对于任意域的投影 $n$ 空间中的有限点集合 $X$,当且仅当 $X$ 位于其维度之和小于 $n$ 的两个平面的联合面上时,$X$ 的坐标环的贝蒂数 $\beta_{n,n+1}$ 为非零。我们的证明直接而简短,归纳步骤基于对矩阵有效的组合声明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信