Multigraded strong Lefschetz property for balanced simplicial complexes

Ryoshun Oba
{"title":"Multigraded strong Lefschetz property for balanced simplicial complexes","authors":"Ryoshun Oba","doi":"arxiv-2408.17110","DOIUrl":null,"url":null,"abstract":"Generalizing the strong Lefschetz property for an $\\mathbb{N}$-graded\nalgebra, we introduce the multigraded strong Lefschetz property for an\n$\\mathbb{N}^m$-graded algebra. We show that, for $\\bm{a} \\in \\mathbb{N}^m_+$,\nthe generic $\\mathbb{N}^m$-graded Artinian reduction of the Stanley-Reisner\nring of an $\\bm{a}$-balanced homology sphere over a field of characteristic $2$\nsatisfies the multigraded strong Lefschetz property. A corollary is the\ninequality $h_{\\bm{b}} \\leq h_{\\bm{c}}$ for $\\bm{b} \\leq \\bm{c} \\leq\n\\bm{a}-\\bm{b}$ among the flag $h$-numbers of an $\\bm{a}$-balanced simplicial\nsphere. This can be seen as a common generalization of the unimodality of the\n$h$-vector of a simplicial sphere by Adiprasito and the balanced generalized\nlower bound inequality by Juhnke-Kubitzke and Murai. We further generalize\nthese results to $\\bm{a}$-balanced homology manifolds and $\\bm{a}$-balanced\nsimplicial cycles over a field of characteristic $2$.","PeriodicalId":501475,"journal":{"name":"arXiv - MATH - Commutative Algebra","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Commutative Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.17110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Generalizing the strong Lefschetz property for an $\mathbb{N}$-graded algebra, we introduce the multigraded strong Lefschetz property for an $\mathbb{N}^m$-graded algebra. We show that, for $\bm{a} \in \mathbb{N}^m_+$, the generic $\mathbb{N}^m$-graded Artinian reduction of the Stanley-Reisner ring of an $\bm{a}$-balanced homology sphere over a field of characteristic $2$ satisfies the multigraded strong Lefschetz property. A corollary is the inequality $h_{\bm{b}} \leq h_{\bm{c}}$ for $\bm{b} \leq \bm{c} \leq \bm{a}-\bm{b}$ among the flag $h$-numbers of an $\bm{a}$-balanced simplicial sphere. This can be seen as a common generalization of the unimodality of the $h$-vector of a simplicial sphere by Adiprasito and the balanced generalized lower bound inequality by Juhnke-Kubitzke and Murai. We further generalize these results to $\bm{a}$-balanced homology manifolds and $\bm{a}$-balanced simplicial cycles over a field of characteristic $2$.
平衡简单复数的多级强列夫谢茨性质
在推广 $\mathbb{N}$ 等级代数的强列夫谢茨性质的基础上,我们引入了 $\mathbb{N}^m$ 等级代数的多等级强列夫谢茨性质。我们证明,对于在 \mathbb{N}^m_+$ 中的\bm{a}$,在特征为 2$的域上的\mathbb{N}^m$平衡同调球的 Stanley-Reisnerring 的通用 $\mathbb{N}^m$ 梯度阿汀还原满足多梯度强列夫谢茨性质。一个推论是$h_{bm{b}}的性质\为$\bm{b}的leq h_{\bm{c}}$\让$h_{bm{c}}$为$bm{b}在$\bm{a}$平衡单纯球的旗$h$数中$\leq\bm{a}-\bm{b}$。这可以看作是对阿迪普拉希托提出的单纯球的$h$矢量的单模性以及尤恩科-库比茨克和村井提出的平衡广义下界不等式的普通推广。我们将这些结果进一步推广到$\bm{a}$平衡同调流形和特性为$2$的域上的$\bm{a}$平衡简单循环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信