{"title":"Wasserstein principal component analysis for circular measures","authors":"Mario Beraha, Matteo Pegoraro","doi":"10.1007/s11222-024-10473-x","DOIUrl":null,"url":null,"abstract":"<p>We consider the 2-Wasserstein space of probability measures supported on the unit-circle, and propose a framework for Principal Component Analysis (PCA) for data living in such a space. We build on a detailed investigation of the optimal transportation problem for measures on the unit-circle which might be of independent interest. In particular, building on previously obtained results, we derive an expression for optimal transport maps in (almost) closed form and propose an alternative definition of the tangent space at an absolutely continuous probability measure, together with fundamental characterizations of the associated exponential and logarithmic maps. PCA is performed by mapping data on the tangent space at the Wasserstein barycentre, which we approximate via an iterative scheme, and for which we establish a sufficient a posteriori condition to assess its convergence. Our methodology is illustrated on several simulated scenarios and a real data analysis of measurements of optical nerve thickness.</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11222-024-10473-x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the 2-Wasserstein space of probability measures supported on the unit-circle, and propose a framework for Principal Component Analysis (PCA) for data living in such a space. We build on a detailed investigation of the optimal transportation problem for measures on the unit-circle which might be of independent interest. In particular, building on previously obtained results, we derive an expression for optimal transport maps in (almost) closed form and propose an alternative definition of the tangent space at an absolutely continuous probability measure, together with fundamental characterizations of the associated exponential and logarithmic maps. PCA is performed by mapping data on the tangent space at the Wasserstein barycentre, which we approximate via an iterative scheme, and for which we establish a sufficient a posteriori condition to assess its convergence. Our methodology is illustrated on several simulated scenarios and a real data analysis of measurements of optical nerve thickness.
期刊介绍:
Statistics and Computing is a bi-monthly refereed journal which publishes papers covering the range of the interface between the statistical and computing sciences.
In particular, it addresses the use of statistical concepts in computing science, for example in machine learning, computer vision and data analytics, as well as the use of computers in data modelling, prediction and analysis. Specific topics which are covered include: techniques for evaluating analytically intractable problems such as bootstrap resampling, Markov chain Monte Carlo, sequential Monte Carlo, approximate Bayesian computation, search and optimization methods, stochastic simulation and Monte Carlo, graphics, computer environments, statistical approaches to software errors, information retrieval, machine learning, statistics of databases and database technology, huge data sets and big data analytics, computer algebra, graphical models, image processing, tomography, inverse problems and uncertainty quantification.
In addition, the journal contains original research reports, authoritative review papers, discussed papers, and occasional special issues on particular topics or carrying proceedings of relevant conferences. Statistics and Computing also publishes book review and software review sections.