{"title":"Hecke algebra action on twisted motivic Chern classes and K-theoretic stable envelopes","authors":"Jakub Koncki, Andrzej Weber","doi":"10.1007/s00208-024-02953-2","DOIUrl":null,"url":null,"abstract":"<p>Let <i>G</i> be a linear semisimple algebraic group and <i>B</i> its Borel subgroup. Let <span>\\({\\mathbb {T}}\\subset B\\)</span> be the maximal torus. We study the inductive construction of Bott–Samelson varieties to obtain recursive formulas for the twisted motivic Chern classes of Schubert cells in <i>G</i>/<i>B</i>. To this end we introduce two families of operators acting on the equivariant K-theory <span>\\({\\text {K}}_{\\mathbb {T}}(G/B)[y]\\)</span>, the right and left Demazure–Lusztig operators depending on a parameter. The twisted motivic Chern classes coincide (up to normalization) with the K-theoretic stable envelopes. Our results imply wall-crossing formulas for a change of the weight chamber and slope parameters. The right and left operators generate a twisted double Hecke algebra. We show that in the type <i>A</i> this algebra acts on the Laurent polynomials. This action is a natural lift of the action on <span>\\({\\text {K}}_{\\mathbb {T}}(G/B)[y]\\)</span> with respect to the Kirwan map. We show that the left and right twisted Demazure–Lusztig operators provide a recursion for twisted motivic Chern classes of matrix Schubert varieties.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"17 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-02953-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let G be a linear semisimple algebraic group and B its Borel subgroup. Let \({\mathbb {T}}\subset B\) be the maximal torus. We study the inductive construction of Bott–Samelson varieties to obtain recursive formulas for the twisted motivic Chern classes of Schubert cells in G/B. To this end we introduce two families of operators acting on the equivariant K-theory \({\text {K}}_{\mathbb {T}}(G/B)[y]\), the right and left Demazure–Lusztig operators depending on a parameter. The twisted motivic Chern classes coincide (up to normalization) with the K-theoretic stable envelopes. Our results imply wall-crossing formulas for a change of the weight chamber and slope parameters. The right and left operators generate a twisted double Hecke algebra. We show that in the type A this algebra acts on the Laurent polynomials. This action is a natural lift of the action on \({\text {K}}_{\mathbb {T}}(G/B)[y]\) with respect to the Kirwan map. We show that the left and right twisted Demazure–Lusztig operators provide a recursion for twisted motivic Chern classes of matrix Schubert varieties.
期刊介绍:
Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin.
The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin.
Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.