Gaussian estimates vs. elliptic regularity on open sets

IF 1.3 2区 数学 Q1 MATHEMATICS
Tim Böhnlein, Simone Ciani, Moritz Egert
{"title":"Gaussian estimates vs. elliptic regularity on open sets","authors":"Tim Böhnlein, Simone Ciani, Moritz Egert","doi":"10.1007/s00208-024-02939-0","DOIUrl":null,"url":null,"abstract":"<p>Given an elliptic operator <span>\\(L= - {{\\,\\textrm{div}\\,}}(A \\nabla \\cdot )\\)</span> subject to mixed boundary conditions on an open subset of <span>\\(\\mathbb {R}^d\\)</span>, we study the relation between Gaussian pointwise estimates for the kernel of the associated heat semigroup, Hölder continuity of <i>L</i>-harmonic functions and the growth of the Dirichlet energy. To this end, we generalize an equivalence theorem of Auscher and Tchamitchian to the case of mixed boundary conditions and to open sets far beyond Lipschitz domains. Yet, we prove the consistency of our abstract result by encompassing operators with real-valued coefficients and their small complex perturbations into one of the aforementioned equivalent properties. The resulting kernel bounds open the door for developing a harmonic analysis for the associated semigroups on rough open sets.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"13 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-02939-0","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given an elliptic operator \(L= - {{\,\textrm{div}\,}}(A \nabla \cdot )\) subject to mixed boundary conditions on an open subset of \(\mathbb {R}^d\), we study the relation between Gaussian pointwise estimates for the kernel of the associated heat semigroup, Hölder continuity of L-harmonic functions and the growth of the Dirichlet energy. To this end, we generalize an equivalence theorem of Auscher and Tchamitchian to the case of mixed boundary conditions and to open sets far beyond Lipschitz domains. Yet, we prove the consistency of our abstract result by encompassing operators with real-valued coefficients and their small complex perturbations into one of the aforementioned equivalent properties. The resulting kernel bounds open the door for developing a harmonic analysis for the associated semigroups on rough open sets.

Abstract Image

开放集上的高斯估计与椭圆正则性
给定椭圆算子 \(L= - {{\,\textrm{div}\,}}(A \nabla \cdot )\) 在 \(\mathbb {R}^d\)的开放子集上受混合边界条件约束,我们研究相关热半群内核的高斯点估计、L谐函数的霍尔德连续性和德里赫特能量增长之间的关系。为此,我们将 Auscher 和 Tchamitchian 的等价定理推广到混合边界条件的情况以及远超过 Lipschitz 域的开放集。然而,通过将具有实值系数的算子及其微小的复扰动纳入上述等价性质之一,我们证明了抽象结果的一致性。由此得出的内核边界为发展粗糙开集上相关半群的谐波分析打开了大门。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematische Annalen
Mathematische Annalen 数学-数学
CiteScore
2.90
自引率
7.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin. The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin. Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信