Uniformly super McDuff $$\hbox {II}_1$$ factors

IF 1.3 2区 数学 Q1 MATHEMATICS
Isaac Goldbring, David Jekel, Srivatsav Kunnawalkam Elayavalli, Jennifer Pi
{"title":"Uniformly super McDuff $$\\hbox {II}_1$$ factors","authors":"Isaac Goldbring, David Jekel, Srivatsav Kunnawalkam Elayavalli, Jennifer Pi","doi":"10.1007/s00208-024-02959-w","DOIUrl":null,"url":null,"abstract":"<p>We introduce and study the family of uniformly super McDuff <span>\\(\\hbox {II}_1\\)</span> factors. This family is shown to be closed under elementary equivalence and also coincides with the family of <span>\\(\\hbox {II}_1\\)</span> factors with the Brown property introduced in Atkinson et al. (Adv. Math. 396, 108107, 2022). We show that a certain family of existentially closed factors, the so-called infinitely generic factors, are uniformly super McDuff, thereby improving a recent result of Chifan et al. (Embedding Universality for <span>\\(\\hbox {II}_1\\)</span> Factors with Property (T). arXiv preprint, 2022). We also show that Popa’s family of strongly McDuff <span>\\(\\hbox {II}_1\\)</span> factors are uniformly super McDuff. Lastly, we investigate when finitely generic <span>\\(\\hbox {II}_1\\)</span> factors are uniformly super McDuff.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-02959-w","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce and study the family of uniformly super McDuff \(\hbox {II}_1\) factors. This family is shown to be closed under elementary equivalence and also coincides with the family of \(\hbox {II}_1\) factors with the Brown property introduced in Atkinson et al. (Adv. Math. 396, 108107, 2022). We show that a certain family of existentially closed factors, the so-called infinitely generic factors, are uniformly super McDuff, thereby improving a recent result of Chifan et al. (Embedding Universality for \(\hbox {II}_1\) Factors with Property (T). arXiv preprint, 2022). We also show that Popa’s family of strongly McDuff \(\hbox {II}_1\) factors are uniformly super McDuff. Lastly, we investigate when finitely generic \(\hbox {II}_1\) factors are uniformly super McDuff.

统一超麦克杜夫 $$\hbox {II}_1$$ 因子
我们介绍并研究了均匀超麦克杜夫(\hbox {II}_1\)因子族。这个族被证明在基本等价下是封闭的,并且与阿特金森等人(Adv. Math. 396, 108107, 2022)中介绍的具有布朗性质的 \(\hbox {II}_1\) 因子的族重合。我们证明了存在封闭因子的某个族,即所谓的无限泛函因子,是均匀超麦克达夫的,从而改进了奇凡等人最近的一个结果(Embedding Universality for \(\hbox {II}_1\) Factors with Property (T). arXiv preprint, 2022)。我们还证明了 Popa 的强 McDuff (\hbox {II}_1\)因子族是均匀超 McDuff 的。最后,我们研究了有限泛函(\hbox {II}_1\)因子是均匀超级麦克达夫的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematische Annalen
Mathematische Annalen 数学-数学
CiteScore
2.90
自引率
7.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin. The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin. Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信