A hybrid model of convolutional neural network and an extreme gradient boosting for reliability evaluation in composite power systems integrated with renewable energy resources
IF 1.6 4区 工程技术Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
{"title":"A hybrid model of convolutional neural network and an extreme gradient boosting for reliability evaluation in composite power systems integrated with renewable energy resources","authors":"Chiranjeevi Yarramsetty, Tukaram Moger, Debashisha Jena","doi":"10.1007/s00202-024-02683-3","DOIUrl":null,"url":null,"abstract":"<p>This paper introduces an approach that enhances the computational efficiency of reliability assessment for composite power systems by integrating machine learning (ML) techniques with sequential monte carlo simulation (SMCS). Integration of renewable energy resources (RERs) into power systems is increasing at a rapid pace. Evaluating the reliability of composite power systems is helpful in identifying any deficiencies in their operation. As power systems operation becomes more fluctuating and stochastic, it is necessary to update the tools used to analyse reliability. In this paper, SMCS is used as a conventional method, as it provides results by taking chronological nature of RERs. However, SMCS is highly computational. ML models fit for solving complex problems that require computational power. ML techniques, such as convolutional neural network (CNN) and hybrib models of Convolutional and Extreme Gradient Boosting (ConXGB), and Convolutional and Random Forest (ConRF) are proposed to determine the expectation of load curtailment and minimum amount of load curtailments. The proposed technique is applied on test system IEEE RTS-79. Results indicate the ConvXGB method is fast and accurate in computing composite reliability indices. For instance, it achieved a Loss of Load Probability (LOLP) of 0.0025 and an Expected Demand Not Supplied (EDNS) of 0.1850 MW, compared to SMCS’s LOLP of 0.0021 and EDNS of 0.1794 MW while reducing computational time from 12900 to 5414 s. These results confirm the proposed method’s speed and accuracy, making it a robust solution for modern power system reliability evaluation.</p>","PeriodicalId":50546,"journal":{"name":"Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00202-024-02683-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces an approach that enhances the computational efficiency of reliability assessment for composite power systems by integrating machine learning (ML) techniques with sequential monte carlo simulation (SMCS). Integration of renewable energy resources (RERs) into power systems is increasing at a rapid pace. Evaluating the reliability of composite power systems is helpful in identifying any deficiencies in their operation. As power systems operation becomes more fluctuating and stochastic, it is necessary to update the tools used to analyse reliability. In this paper, SMCS is used as a conventional method, as it provides results by taking chronological nature of RERs. However, SMCS is highly computational. ML models fit for solving complex problems that require computational power. ML techniques, such as convolutional neural network (CNN) and hybrib models of Convolutional and Extreme Gradient Boosting (ConXGB), and Convolutional and Random Forest (ConRF) are proposed to determine the expectation of load curtailment and minimum amount of load curtailments. The proposed technique is applied on test system IEEE RTS-79. Results indicate the ConvXGB method is fast and accurate in computing composite reliability indices. For instance, it achieved a Loss of Load Probability (LOLP) of 0.0025 and an Expected Demand Not Supplied (EDNS) of 0.1850 MW, compared to SMCS’s LOLP of 0.0021 and EDNS of 0.1794 MW while reducing computational time from 12900 to 5414 s. These results confirm the proposed method’s speed and accuracy, making it a robust solution for modern power system reliability evaluation.
期刊介绍:
The journal “Electrical Engineering” following the long tradition of Archiv für Elektrotechnik publishes original papers of archival value in electrical engineering with a strong focus on electric power systems, smart grid approaches to power transmission and distribution, power system planning, operation and control, electricity markets, renewable power generation, microgrids, power electronics, electrical machines and drives, electric vehicles, railway electrification systems and electric transportation infrastructures, energy storage in electric power systems and vehicles, high voltage engineering, electromagnetic transients in power networks, lightning protection, electrical safety, electrical insulation systems, apparatus, devices, and components. Manuscripts describing theoretical, computer application and experimental research results are welcomed.
Electrical Engineering - Archiv für Elektrotechnik is published in agreement with Verband der Elektrotechnik Elektronik Informationstechnik eV (VDE).