Giant enhancement of nonlinear harmonics of an optical-tweezer phonon laser

IF 27.2 Q1 OPTICS
eLight Pub Date : 2024-09-05 DOI:10.1186/s43593-024-00064-8
Guangzong Xiao, Tengfang Kuang, Yutong He, Xinlin Chen, Wei Xiong, Xiang Han, Zhongqi Tan, Hui Luo, Hui Jing
{"title":"Giant enhancement of nonlinear harmonics of an optical-tweezer phonon laser","authors":"Guangzong Xiao, Tengfang Kuang, Yutong He, Xinlin Chen, Wei Xiong, Xiang Han, Zhongqi Tan, Hui Luo, Hui Jing","doi":"10.1186/s43593-024-00064-8","DOIUrl":null,"url":null,"abstract":"<p>Phonon lasers, as mechanical analogues of optical lasers, are unique tools for not only fundamental studies of the emerging field of phononics but also diverse applications such as deep-ocean monitoring, force sensing, and biomedical ultrasonics. Recently, nonlinear phonon-lasing effects were observed in an opto-levitated micro-sphere, i.e., the spontaneous emerging of weak signals of high-order phonon harmonics in the phonon lasing regime. However, both the strengths and the quality factors of the emerging phonon harmonics are very poor, thus severely hindering their potential applications in making and utilizing nonlinear phonon-laser devices. Here we show that, by applying a single-colour electronic injection to this levitated system, giant enhancement can be achieved for all higher-order phonon harmonics, with more than 3 orders enhanced brightness and 5 orders narrowed linewidth. Such an electronically-enhanced phonon laser is also far more stable, with frequency stability extended from a dozen of minutes to over 1 h. More importantly, higher-order phonon correlations, as an essential lasing feature, are confirmed to be enhanced by the electronic injection as well, which as far as we know, has not been reported in previous works using this technique. This work, providing much stronger and better-quality signals of coherent phonon harmonics, is a key step towards controlling and utilizing nonlinear phonon lasers for applications such as phonon frequency combs, broadband phonon sensors, and ultrasonic bio-medical diagnosis.</p>","PeriodicalId":72891,"journal":{"name":"eLight","volume":null,"pages":null},"PeriodicalIF":27.2000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eLight","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43593-024-00064-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Phonon lasers, as mechanical analogues of optical lasers, are unique tools for not only fundamental studies of the emerging field of phononics but also diverse applications such as deep-ocean monitoring, force sensing, and biomedical ultrasonics. Recently, nonlinear phonon-lasing effects were observed in an opto-levitated micro-sphere, i.e., the spontaneous emerging of weak signals of high-order phonon harmonics in the phonon lasing regime. However, both the strengths and the quality factors of the emerging phonon harmonics are very poor, thus severely hindering their potential applications in making and utilizing nonlinear phonon-laser devices. Here we show that, by applying a single-colour electronic injection to this levitated system, giant enhancement can be achieved for all higher-order phonon harmonics, with more than 3 orders enhanced brightness and 5 orders narrowed linewidth. Such an electronically-enhanced phonon laser is also far more stable, with frequency stability extended from a dozen of minutes to over 1 h. More importantly, higher-order phonon correlations, as an essential lasing feature, are confirmed to be enhanced by the electronic injection as well, which as far as we know, has not been reported in previous works using this technique. This work, providing much stronger and better-quality signals of coherent phonon harmonics, is a key step towards controlling and utilizing nonlinear phonon lasers for applications such as phonon frequency combs, broadband phonon sensors, and ultrasonic bio-medical diagnosis.

Abstract Image

光学镊子声子激光器非线性谐波的巨幅增强
声子激光器作为光学激光器的机械类似物,是一种独特的工具,不仅可用于新兴声子学领域的基础研究,还可用于深海监测、力传感和生物医学超声波等多种应用。最近,在一个光提升微球中观察到了非线性声子激光效应,即在声子激光机制中自发出现高阶声子谐波的微弱信号。然而,新出现的声子谐波的强度和品质因数都很低,因此严重阻碍了它们在制造和利用非线性声子激光设备方面的潜在应用。在这里,我们展示了通过对这种悬浮系统进行单色电子注入,可以实现所有高阶声子谐波的巨大增强,亮度增强超过 3 个数量级,线宽缩小 5 个数量级。更重要的是,作为一种基本的激光特征,高阶声子相关性也被证实通过电子注入得到了增强,据我们所知,这在以前使用这种技术的工作中还没有报道过。这项工作提供了更强、更高质量的相干声子谐波信号,是控制和利用非线性声子激光应用(如声子频率梳、宽带声子传感器和超声波生物医学诊断)的关键一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
30.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信