Fiber functors and reconstruction of Hopf algebras

Simon Lentner, Martín Mombelli
{"title":"Fiber functors and reconstruction of Hopf algebras","authors":"Simon Lentner, Martín Mombelli","doi":"10.4153/s0008414x24000531","DOIUrl":null,"url":null,"abstract":"<p>The main objective of the present paper is to present a version of the Tannaka–Krein type reconstruction theorems: if <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910155856085-0229:S0008414X24000531:S0008414X24000531_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$F:{\\mathcal B}\\to {\\mathcal C}$</span></span></img></span></span> is an exact faithful monoidal functor of tensor categories, one would like to realize <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910155856085-0229:S0008414X24000531:S0008414X24000531_inline2.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathcal B}$</span></span></img></span></span> as category of representations of a braided Hopf algebra <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910155856085-0229:S0008414X24000531:S0008414X24000531_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$H(F)$</span></span></img></span></span> in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910155856085-0229:S0008414X24000531:S0008414X24000531_inline4.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathcal C}$</span></span></img></span></span>. We prove that this is the case iff <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910155856085-0229:S0008414X24000531:S0008414X24000531_inline5.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathcal B}$</span></span></img></span></span> has the additional structure of a monoidal <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910155856085-0229:S0008414X24000531:S0008414X24000531_inline6.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathcal C}$</span></span></img></span></span>-module category compatible with <span>F</span>, which equivalently means that <span>F</span> admits a monoidal section. For Hopf algebras, this reduces to a version of the Radford projection theorem. The Hopf algebra is constructed through the relative coend for module categories. We expect this basic result to have a wide range of applications, in particular in the absence of fiber functors, and we give some applications. One particular motivation was the logarithmic Kazhdan–Lusztig conjecture.</p>","PeriodicalId":501820,"journal":{"name":"Canadian Journal of Mathematics","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008414x24000531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The main objective of the present paper is to present a version of the Tannaka–Krein type reconstruction theorems: if Abstract Image$F:{\mathcal B}\to {\mathcal C}$ is an exact faithful monoidal functor of tensor categories, one would like to realize Abstract Image${\mathcal B}$ as category of representations of a braided Hopf algebra Abstract Image$H(F)$ in Abstract Image${\mathcal C}$. We prove that this is the case iff Abstract Image${\mathcal B}$ has the additional structure of a monoidal Abstract Image${\mathcal C}$-module category compatible with F, which equivalently means that F admits a monoidal section. For Hopf algebras, this reduces to a version of the Radford projection theorem. The Hopf algebra is constructed through the relative coend for module categories. We expect this basic result to have a wide range of applications, in particular in the absence of fiber functors, and we give some applications. One particular motivation was the logarithmic Kazhdan–Lusztig conjecture.

霍普夫代数的纤维函数和重构
本文的主要目的是提出塔纳卡-克莱因类型重构定理的一个版本:如果 $F:{\mathcal B}\to {\mathcal C}$ 是张量范畴的一个精确忠实单环函子,那么我们希望把 ${\mathcal B}$ 实现为在 ${\mathcal C}$ 中的编织霍普夫代数 $H(F)$ 的表示范畴。我们证明,如果 ${mathcal B}$ 具有与 F 兼容的单环 ${mathcal C}$ 模块范畴的附加结构,这就意味着 F 允许一个单环部分。对于霍普夫代数,这可以简化为拉德福德投影定理的一个版本。霍普夫代数是通过模块范畴的相对共元来构造的。我们希望这一基本结果能有广泛的应用,特别是在没有纤维函数的情况下,我们给出了一些应用。其中一个特别的动机是对数卡兹丹-卢兹蒂格猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信