{"title":"Bandwidth modulation and pulse characterization of passively Q-switched erbium-doped fiber laser","authors":"Farah Diana Muhammad, Khalilah Zatiliman Hamdan","doi":"10.1088/1555-6611/ad6d51","DOIUrl":null,"url":null,"abstract":"We demonstrate the modulation of laser bandwidth by utilizing an ultranarrow tunable bandpass filter (UNTBF) in a passively Q-switched erbium-doped fiber laser. The passive Q-switch mechanism is enabled by using carbon nanotubes as saturable absorber at a Q-switched threshold of 35.5 mW. Based on spectral filtering effect introduced by the UNTBF, the 3 dB laser bandwidth can be tuned from 0.016 nm to 0.478 nm at a fixed pump power of 75.9 mW. The corresponding pulse behavior for each different bandwidth is characterized, and the results reveals that the pulse width can be as well tuned from 7.8 to 2.6 <italic toggle=\"yes\">μ</italic>s against the laser bandwidth, which agrees with the rule of time-bandwidth product. Correspondingly, the pulse repetition rate and the pulse energy vary from 16.23 kHz to 26.16 kHz and from 0.67 to 1.03 <italic toggle=\"yes\">μ</italic>J respectively across the laser bandwidth. Further investigation of the pulse performance is performed against the pump power increment up to 107.2 mW. To the best of our knowledge, this is the first demonstration of spectrum bandwidth modulation in a passively Q-switched fiber laser, which can be useful for fully exploiting the possibilities of Q-switched pulse applications.","PeriodicalId":17976,"journal":{"name":"Laser Physics","volume":"40 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1555-6611/ad6d51","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
We demonstrate the modulation of laser bandwidth by utilizing an ultranarrow tunable bandpass filter (UNTBF) in a passively Q-switched erbium-doped fiber laser. The passive Q-switch mechanism is enabled by using carbon nanotubes as saturable absorber at a Q-switched threshold of 35.5 mW. Based on spectral filtering effect introduced by the UNTBF, the 3 dB laser bandwidth can be tuned from 0.016 nm to 0.478 nm at a fixed pump power of 75.9 mW. The corresponding pulse behavior for each different bandwidth is characterized, and the results reveals that the pulse width can be as well tuned from 7.8 to 2.6 μs against the laser bandwidth, which agrees with the rule of time-bandwidth product. Correspondingly, the pulse repetition rate and the pulse energy vary from 16.23 kHz to 26.16 kHz and from 0.67 to 1.03 μJ respectively across the laser bandwidth. Further investigation of the pulse performance is performed against the pump power increment up to 107.2 mW. To the best of our knowledge, this is the first demonstration of spectrum bandwidth modulation in a passively Q-switched fiber laser, which can be useful for fully exploiting the possibilities of Q-switched pulse applications.
期刊介绍:
Laser Physics offers a comprehensive view of theoretical and experimental laser research and applications. Articles cover every aspect of modern laser physics and quantum electronics, emphasizing physical effects in various media (solid, gaseous, liquid) leading to the generation of laser radiation; peculiarities of propagation of laser radiation; problems involving impact of laser radiation on various substances and the emerging physical effects, including coherent ones; the applied use of lasers and laser spectroscopy; the processing and storage of information; and more.
The full list of subject areas covered is as follows:
-physics of lasers-
fibre optics and fibre lasers-
quantum optics and quantum information science-
ultrafast optics and strong-field physics-
nonlinear optics-
physics of cold trapped atoms-
laser methods in chemistry, biology, medicine and ecology-
laser spectroscopy-
novel laser materials and lasers-
optics of nanomaterials-
interaction of laser radiation with matter-
laser interaction with solids-
photonics