An implementation of GPU accelerated mapreduce: using hadoop with openCL for breast cancer detection and compute-intensive jobs

Hamza Ouhakki, Abdelali Elmoufidi
{"title":"An implementation of GPU accelerated mapreduce: using hadoop with openCL for breast cancer detection and compute-intensive jobs","authors":"Hamza Ouhakki, Abdelali Elmoufidi","doi":"10.1007/s41870-024-02171-8","DOIUrl":null,"url":null,"abstract":"<p>Abstract-In the realm of distributed computing for large-scale data processing, MapReduce stands out for its efficiency. However, as tasks become increasingly compute-intensive, it faces challenges in single-node performance. In the context of breast cancer detection, particularly with image data, a new approach has emerged to enhance MapReduce through GPU acceleration. This implementation, executed using Hadoop and OpenCL, targets a general and cost-effective hardware platform, seamlessly integrating into Apache Hadoop. Tailored for a heterogeneous multi-machine and multicore architecture, this solution addresses the compute-intensive nature of big data applications in breast cancer image analysis. Remarkably, the implementation has achieved a significant nearly 13-fold improvement in performance, without the need for additional optimizations.</p>","PeriodicalId":14138,"journal":{"name":"International Journal of Information Technology","volume":"390 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41870-024-02171-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract-In the realm of distributed computing for large-scale data processing, MapReduce stands out for its efficiency. However, as tasks become increasingly compute-intensive, it faces challenges in single-node performance. In the context of breast cancer detection, particularly with image data, a new approach has emerged to enhance MapReduce through GPU acceleration. This implementation, executed using Hadoop and OpenCL, targets a general and cost-effective hardware platform, seamlessly integrating into Apache Hadoop. Tailored for a heterogeneous multi-machine and multicore architecture, this solution addresses the compute-intensive nature of big data applications in breast cancer image analysis. Remarkably, the implementation has achieved a significant nearly 13-fold improvement in performance, without the need for additional optimizations.

Abstract Image

GPU 加速 mapreduce 的实现:使用 hadoop 和 openCL 进行乳腺癌检测和计算密集型工作
摘要 在大规模数据处理的分布式计算领域,MapReduce 以其高效性脱颖而出。然而,随着任务的计算密集度越来越高,它在单节点性能方面面临着挑战。在乳腺癌检测(尤其是图像数据)方面,出现了一种通过 GPU 加速来增强 MapReduce 的新方法。该实施方案使用 Hadoop 和 OpenCL 执行,以通用且经济高效的硬件平台为目标,可无缝集成到 Apache Hadoop 中。该解决方案专为异构多机和多核架构量身定制,可解决乳腺癌图像分析中大数据应用的计算密集型问题。值得注意的是,该实施方案的性能显著提高了近 13 倍,而且无需额外优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信