{"title":"Loading Methods Effect on Behavior of RC Beam-Column Sub-assemblages to Resist Progressive Collapse","authors":"Tianqi Xue, Xiaolan Yuan, Zhi Li","doi":"10.1007/s12205-024-0672-9","DOIUrl":null,"url":null,"abstract":"<p>This paper investigated the effect of different loading methods on the collapse mechanism of reinforced concrete (RC) structures by conducting tests on two RC beam-column sub-assemblages. Tests employed two loading methods, i.e., concentrated loading (CL) method and uniformly distributed loading (UDL) method. Failure modes and load-displacement curves of the sub-assemblages were obtained by the tests. The results revealed that the specimens subjected to different loading methods exhibited different failure modes. The CL method would over-estimate the deformation capacity of the sub-assemblages. The ultimate displacement of the specimen subjected to CL was 3.5% higher than that subjected to UDL. The ANSYS/LS-DYNA based finite element (FE) analyses were performed to discuss the effects of different initial uniform loads on UDL specimen beams. The FE results indicated that the deformation capacity decreased with the increase of initial uniform loads. A 200% increase in initial uniform load decreased the ultimate displacement by 10.3%. Moreover, comparison of results under single- and multi-point loading demonstrated that the failure modes of specimens were influenced by the number of loading points.</p>","PeriodicalId":17897,"journal":{"name":"KSCE Journal of Civil Engineering","volume":"25 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"KSCE Journal of Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12205-024-0672-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigated the effect of different loading methods on the collapse mechanism of reinforced concrete (RC) structures by conducting tests on two RC beam-column sub-assemblages. Tests employed two loading methods, i.e., concentrated loading (CL) method and uniformly distributed loading (UDL) method. Failure modes and load-displacement curves of the sub-assemblages were obtained by the tests. The results revealed that the specimens subjected to different loading methods exhibited different failure modes. The CL method would over-estimate the deformation capacity of the sub-assemblages. The ultimate displacement of the specimen subjected to CL was 3.5% higher than that subjected to UDL. The ANSYS/LS-DYNA based finite element (FE) analyses were performed to discuss the effects of different initial uniform loads on UDL specimen beams. The FE results indicated that the deformation capacity decreased with the increase of initial uniform loads. A 200% increase in initial uniform load decreased the ultimate displacement by 10.3%. Moreover, comparison of results under single- and multi-point loading demonstrated that the failure modes of specimens were influenced by the number of loading points.
期刊介绍:
The KSCE Journal of Civil Engineering is a technical bimonthly journal of the Korean Society of Civil Engineers. The journal reports original study results (both academic and practical) on past practices and present information in all civil engineering fields.
The journal publishes original papers within the broad field of civil engineering, which includes, but are not limited to, the following: coastal and harbor engineering, construction management, environmental engineering, geotechnical engineering, highway engineering, hydraulic engineering, information technology, nuclear power engineering, railroad engineering, structural engineering, surveying and geo-spatial engineering, transportation engineering, tunnel engineering, and water resources and hydrologic engineering