The Influence of Pile Shaft Distributed Grouting on the Horizontal Load Response of Rectangular Piles

IF 1.9 4区 工程技术 Q3 ENGINEERING, CIVIL
Wenshuai Li, Wen Yuan, Qiyu Tao, Weiming Gong, Guoliang Dai
{"title":"The Influence of Pile Shaft Distributed Grouting on the Horizontal Load Response of Rectangular Piles","authors":"Wenshuai Li, Wen Yuan, Qiyu Tao, Weiming Gong, Guoliang Dai","doi":"10.1007/s12205-024-2727-3","DOIUrl":null,"url":null,"abstract":"<p>In-situ lateral load tests were conducted on rectangular piles in gravelly soil before and after grouting to investigate the impact of combined side and end grouting on lateral bearing capacity and the failure mode of pile-soil interaction. The results indicate that this combined grouting technique significantly enhanced the lateral bearing capacity of the pile, achieving a 30% increase compared to before grouting. After grouting, the bonding state between the pile and the soil improved, resulting in the formation of tension-shear cracks within the soil on the side of the pile under lateral load. The load-displacement curve of the rectangular pile exhibited nonlinearity, with the deflection deformation showing the load characteristics of an elastic long pile. The bilinear model can accurately assess the actual bearing capacity of the rectangular pile. Comparing the theoretical model predictions with the experimental data, the prediction errors were −3.5% and 1.8% before and after grouting, respectively.</p>","PeriodicalId":17897,"journal":{"name":"KSCE Journal of Civil Engineering","volume":"3 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"KSCE Journal of Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12205-024-2727-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

In-situ lateral load tests were conducted on rectangular piles in gravelly soil before and after grouting to investigate the impact of combined side and end grouting on lateral bearing capacity and the failure mode of pile-soil interaction. The results indicate that this combined grouting technique significantly enhanced the lateral bearing capacity of the pile, achieving a 30% increase compared to before grouting. After grouting, the bonding state between the pile and the soil improved, resulting in the formation of tension-shear cracks within the soil on the side of the pile under lateral load. The load-displacement curve of the rectangular pile exhibited nonlinearity, with the deflection deformation showing the load characteristics of an elastic long pile. The bilinear model can accurately assess the actual bearing capacity of the rectangular pile. Comparing the theoretical model predictions with the experimental data, the prediction errors were −3.5% and 1.8% before and after grouting, respectively.

桩轴分布式灌浆对矩形桩水平荷载响应的影响
对砾石土中的矩形桩进行了灌浆前后的原位侧向荷载试验,以研究侧向和端部联合灌浆对侧向承载力的影响以及桩土相互作用的破坏模式。结果表明,这种联合注浆技术显著提高了桩的侧向承载力,与注浆前相比提高了 30%。灌浆后,桩与土体之间的粘结状态得到改善,从而在承受侧向荷载的桩侧土体中形成了拉剪裂缝。矩形桩的荷载-位移曲线呈现非线性,挠度变形显示出弹性长桩的荷载特征。双线性模型可以准确评估矩形桩的实际承载力。将理论模型预测值与实验数据相比较,灌浆前后的预测误差分别为-3.5%和 1.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
KSCE Journal of Civil Engineering
KSCE Journal of Civil Engineering ENGINEERING, CIVIL-
CiteScore
4.00
自引率
9.10%
发文量
329
审稿时长
4.8 months
期刊介绍: The KSCE Journal of Civil Engineering is a technical bimonthly journal of the Korean Society of Civil Engineers. The journal reports original study results (both academic and practical) on past practices and present information in all civil engineering fields. The journal publishes original papers within the broad field of civil engineering, which includes, but are not limited to, the following: coastal and harbor engineering, construction management, environmental engineering, geotechnical engineering, highway engineering, hydraulic engineering, information technology, nuclear power engineering, railroad engineering, structural engineering, surveying and geo-spatial engineering, transportation engineering, tunnel engineering, and water resources and hydrologic engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信