Shuo Dong, Wencai Sun, Zhifa Yang, Long Wang, Xinyue Wang, Yuanjia Li
{"title":"An Optimization Method of Catch-up Speed for Highway Truck into Formation Considering Generalized Cost","authors":"Shuo Dong, Wencai Sun, Zhifa Yang, Long Wang, Xinyue Wang, Yuanjia Li","doi":"10.1007/s12205-024-2411-7","DOIUrl":null,"url":null,"abstract":"<p>The formation by trucks equipped with connected and autonomous driving technology reduces the fuel consumption of vehicles and increases transport efficiency. This study focuses on highway freight trucks, and the functions of fuel cost and time cost were established based on vehicle dynamics theory and transportation economics. A platoon benefit function was developed combined with the functions of fuel cost time cost. Subsequently, an optimization model for the catch-up speed during the platooning process was established. To analyze the effects of the speed of vehicles and formations on the optimal catch-up speed, a transportation from Changchun to Shenyang in China was used as a case study, and the impacts of air resistance variation coefficient and distance between vehicle and formation on platoon benefits were discussed. The results indicate that the platoon benefit decreases by 16.49% when the distance between vehicle and formation increases from 0.2 km to 5 km, and the benefit decreases by 64.87% when the in-platoon air resistance variation coefficient increases from 0.6 to 0.95, which demonstrates that joining a closer platoon will yield greater benefits when multiple formations are available. Furthermore, a lower in-platoon air resistance variation coefficient increases the likelihood of joining that platoon.</p>","PeriodicalId":17897,"journal":{"name":"KSCE Journal of Civil Engineering","volume":"8 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"KSCE Journal of Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12205-024-2411-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The formation by trucks equipped with connected and autonomous driving technology reduces the fuel consumption of vehicles and increases transport efficiency. This study focuses on highway freight trucks, and the functions of fuel cost and time cost were established based on vehicle dynamics theory and transportation economics. A platoon benefit function was developed combined with the functions of fuel cost time cost. Subsequently, an optimization model for the catch-up speed during the platooning process was established. To analyze the effects of the speed of vehicles and formations on the optimal catch-up speed, a transportation from Changchun to Shenyang in China was used as a case study, and the impacts of air resistance variation coefficient and distance between vehicle and formation on platoon benefits were discussed. The results indicate that the platoon benefit decreases by 16.49% when the distance between vehicle and formation increases from 0.2 km to 5 km, and the benefit decreases by 64.87% when the in-platoon air resistance variation coefficient increases from 0.6 to 0.95, which demonstrates that joining a closer platoon will yield greater benefits when multiple formations are available. Furthermore, a lower in-platoon air resistance variation coefficient increases the likelihood of joining that platoon.
期刊介绍:
The KSCE Journal of Civil Engineering is a technical bimonthly journal of the Korean Society of Civil Engineers. The journal reports original study results (both academic and practical) on past practices and present information in all civil engineering fields.
The journal publishes original papers within the broad field of civil engineering, which includes, but are not limited to, the following: coastal and harbor engineering, construction management, environmental engineering, geotechnical engineering, highway engineering, hydraulic engineering, information technology, nuclear power engineering, railroad engineering, structural engineering, surveying and geo-spatial engineering, transportation engineering, tunnel engineering, and water resources and hydrologic engineering