Seyed Saeed Beheshti, Mohammad Safi, Khosro Rahmani
{"title":"Experimental Investigation of the Behavior of Loaded Fiber Reinforced Concrete Beam Exposed to Fire","authors":"Seyed Saeed Beheshti, Mohammad Safi, Khosro Rahmani","doi":"10.1007/s12205-024-0335-x","DOIUrl":null,"url":null,"abstract":"<p>The effect of direct fire on flexural behavior of small-scale fiber reinforced concrete beams under sustained loading has been studies through an experimental investigation. A mix of synthetic polypropylene structural macro and micro fibers has been used to obtain the effect of mixed fiber dosage on bearing capacity of simply supported beam under direct flame at its bottom face. The load-deflection, temperature gradient, spalling and durability time until collapse has been recorded and compared in different conditions. In order to know the effect of load level, the tests have been performed for 40% and 70% of the ultimate member capacity at normal temperature. Based on obtained test results, the use of macro synthetic fibers can increase the flexural ductility more than 50% and the durability time until failure up to 27%. The post fire behavior curves of all samples at the cooling phase have also been checked until the beam failure has been occurred including the weight losses due to spalling for both heating and cooling phases. A comparison with the results of conventional post fire loading tests on cooled samples showed that the results can be underestimated about 1.5 times compared to the direct fire test. It has also been shown that the level of sustained load directly affects the capacity, durability and ductility while the increase in the number of fibers do not necessarily improve the behavior in the same manner.</p>","PeriodicalId":17897,"journal":{"name":"KSCE Journal of Civil Engineering","volume":"12 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"KSCE Journal of Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12205-024-0335-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The effect of direct fire on flexural behavior of small-scale fiber reinforced concrete beams under sustained loading has been studies through an experimental investigation. A mix of synthetic polypropylene structural macro and micro fibers has been used to obtain the effect of mixed fiber dosage on bearing capacity of simply supported beam under direct flame at its bottom face. The load-deflection, temperature gradient, spalling and durability time until collapse has been recorded and compared in different conditions. In order to know the effect of load level, the tests have been performed for 40% and 70% of the ultimate member capacity at normal temperature. Based on obtained test results, the use of macro synthetic fibers can increase the flexural ductility more than 50% and the durability time until failure up to 27%. The post fire behavior curves of all samples at the cooling phase have also been checked until the beam failure has been occurred including the weight losses due to spalling for both heating and cooling phases. A comparison with the results of conventional post fire loading tests on cooled samples showed that the results can be underestimated about 1.5 times compared to the direct fire test. It has also been shown that the level of sustained load directly affects the capacity, durability and ductility while the increase in the number of fibers do not necessarily improve the behavior in the same manner.
期刊介绍:
The KSCE Journal of Civil Engineering is a technical bimonthly journal of the Korean Society of Civil Engineers. The journal reports original study results (both academic and practical) on past practices and present information in all civil engineering fields.
The journal publishes original papers within the broad field of civil engineering, which includes, but are not limited to, the following: coastal and harbor engineering, construction management, environmental engineering, geotechnical engineering, highway engineering, hydraulic engineering, information technology, nuclear power engineering, railroad engineering, structural engineering, surveying and geo-spatial engineering, transportation engineering, tunnel engineering, and water resources and hydrologic engineering