Comparative Study on CNN-based Bridge Seismic Damage Identification Using Various Features

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiaohang Zhou, Yian Zhao, Inamullah Khan, Lu Cao
{"title":"Comparative Study on CNN-based Bridge Seismic Damage Identification Using Various Features","authors":"Xiaohang Zhou, Yian Zhao, Inamullah Khan, Lu Cao","doi":"10.1007/s12205-024-0559-9","DOIUrl":null,"url":null,"abstract":"<p>Quick and accurate identification of bridge damage after an earthquake is crucial for emergency decision-making and post-disaster rehabilitation. The maturing technology of deep neural networks (DNN) and the integration of health monitoring systems provide a viable solution for seismic damage identification in bridges. However, how to construct damage features that can efficiently characterize the seismic damage of the bridge and are suitable for the use with DNN needs further investigation. This study focuses on seismic damage identification for a continuous rigid bridge using raw acceleration responses, statistical features, frequency features, and time-frequency features as inputs, with damage states as outputs, employing a deep convolutional neural network (CNN) for pattern classification. Results indicate that all four damage features can identify seismic damage, with time-frequency features achieving the highest accuracy but having a complex construction process. Frequency features also demonstrate high accuracy with simpler construction. Raw acceleration response and statistical features perform poorly, with statistical features deemed unsuitable as damage indicators. Overall, frequency features are recommended as CNN inputs for quick and accurate bridge seismic damage identification.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12205-024-0559-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Quick and accurate identification of bridge damage after an earthquake is crucial for emergency decision-making and post-disaster rehabilitation. The maturing technology of deep neural networks (DNN) and the integration of health monitoring systems provide a viable solution for seismic damage identification in bridges. However, how to construct damage features that can efficiently characterize the seismic damage of the bridge and are suitable for the use with DNN needs further investigation. This study focuses on seismic damage identification for a continuous rigid bridge using raw acceleration responses, statistical features, frequency features, and time-frequency features as inputs, with damage states as outputs, employing a deep convolutional neural network (CNN) for pattern classification. Results indicate that all four damage features can identify seismic damage, with time-frequency features achieving the highest accuracy but having a complex construction process. Frequency features also demonstrate high accuracy with simpler construction. Raw acceleration response and statistical features perform poorly, with statistical features deemed unsuitable as damage indicators. Overall, frequency features are recommended as CNN inputs for quick and accurate bridge seismic damage identification.

利用各种特征进行基于 CNN 的桥梁地震损伤识别的比较研究
地震发生后,快速准确地识别桥梁损坏对于应急决策和灾后重建至关重要。深度神经网络(DNN)技术的不断成熟以及与健康监测系统的整合为桥梁震害识别提供了可行的解决方案。然而,如何构建能有效表征桥梁地震损伤并适合 DNN 使用的损伤特征还需要进一步研究。本研究以连续刚构桥的地震损伤识别为重点,以原始加速度响应、统计特征、频率特性和时频特征为输入,以损伤状态为输出,采用深度卷积神经网络(CNN)进行模式分类。结果表明,所有四种损伤特征都能识别地震损伤,其中时间频率特征的准确率最高,但其构造过程较为复杂。频率特性也具有较高的准确性,但构建过程较为简单。原始加速度响应和统计特征表现较差,统计特征被认为不适合作为破坏指标。总体而言,建议将频率特性作为 CNN 输入,以快速准确地识别桥梁地震损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信