{"title":"Sentiment-aware drug recommendations with a focus on symptom-condition mapping","authors":"E. Anbazhagan, E. Sophiya, R. Prasanna Kumar","doi":"10.1007/s41870-024-02091-7","DOIUrl":null,"url":null,"abstract":"<p>The adoption of digital health records and the rise of online medical forums resulted in massive volumes of unstructured healthcare data. Most of the data used by traditional drug recommendation systems is obtained from patient Electronic Health Records (EHR) and subjective feedback and experiences included in patient evaluations. Nevertheless, the current systems based on sentiment analysis fail consider Symptom based diagnosis whereas researches that proposes Graph models doesn’t not include patient satisfaction and Health History as some has specific needs. To address the draw backs of existing drug recommendation systems, this study suggests a novel approach that combines symptom-disease mapping with sentiment analysis of patient reviews. The primary objective of the research is to utilize machine learning classifiers to make symptom-based predictions about probable medical conditions as Phase I. Then, before being fed into sequence network and machine learning models, patient reviews that are relevant to the predicted condition are filtered as Phase II. This method generates probabilities for suggesting certain drugs by evaluating sentiments and incorporating review ratings. With a Performance score of Ensemble Model up to 99.25% in Phase I and accuracy of 99.45% for sentiment analyser in Phase II. The performance of the model was evaluated based on accuracy, Receiver Operating Characteristic Curve (ROC)-Area Under Curve (AUC) score, sensitivity, selectivity. The proposed system helps in recommending the optimal drug for any type of symptom samples which is available in database.</p>","PeriodicalId":14138,"journal":{"name":"International Journal of Information Technology","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41870-024-02091-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The adoption of digital health records and the rise of online medical forums resulted in massive volumes of unstructured healthcare data. Most of the data used by traditional drug recommendation systems is obtained from patient Electronic Health Records (EHR) and subjective feedback and experiences included in patient evaluations. Nevertheless, the current systems based on sentiment analysis fail consider Symptom based diagnosis whereas researches that proposes Graph models doesn’t not include patient satisfaction and Health History as some has specific needs. To address the draw backs of existing drug recommendation systems, this study suggests a novel approach that combines symptom-disease mapping with sentiment analysis of patient reviews. The primary objective of the research is to utilize machine learning classifiers to make symptom-based predictions about probable medical conditions as Phase I. Then, before being fed into sequence network and machine learning models, patient reviews that are relevant to the predicted condition are filtered as Phase II. This method generates probabilities for suggesting certain drugs by evaluating sentiments and incorporating review ratings. With a Performance score of Ensemble Model up to 99.25% in Phase I and accuracy of 99.45% for sentiment analyser in Phase II. The performance of the model was evaluated based on accuracy, Receiver Operating Characteristic Curve (ROC)-Area Under Curve (AUC) score, sensitivity, selectivity. The proposed system helps in recommending the optimal drug for any type of symptom samples which is available in database.