Latent Space Interpretation for Stylistic Analysis and Explainable Authorship Attribution

Milad Alshomary, Narutatsu Ri, Marianna Apidianaki, Ajay Patel, Smaranda Muresan, Kathleen McKeown
{"title":"Latent Space Interpretation for Stylistic Analysis and Explainable Authorship Attribution","authors":"Milad Alshomary, Narutatsu Ri, Marianna Apidianaki, Ajay Patel, Smaranda Muresan, Kathleen McKeown","doi":"arxiv-2409.07072","DOIUrl":null,"url":null,"abstract":"Recent state-of-the-art authorship attribution methods learn authorship\nrepresentations of texts in a latent, non-interpretable space, hindering their\nusability in real-world applications. Our work proposes a novel approach to\ninterpreting these learned embeddings by identifying representative points in\nthe latent space and utilizing LLMs to generate informative natural language\ndescriptions of the writing style of each point. We evaluate the alignment of\nour interpretable space with the latent one and find that it achieves the best\nprediction agreement compared to other baselines. Additionally, we conduct a\nhuman evaluation to assess the quality of these style descriptions, validating\ntheir utility as explanations for the latent space. Finally, we investigate\nwhether human performance on the challenging AA task improves when aided by our\nsystem's explanations, finding an average improvement of around +20% in\naccuracy.","PeriodicalId":501030,"journal":{"name":"arXiv - CS - Computation and Language","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computation and Language","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent state-of-the-art authorship attribution methods learn authorship representations of texts in a latent, non-interpretable space, hindering their usability in real-world applications. Our work proposes a novel approach to interpreting these learned embeddings by identifying representative points in the latent space and utilizing LLMs to generate informative natural language descriptions of the writing style of each point. We evaluate the alignment of our interpretable space with the latent one and find that it achieves the best prediction agreement compared to other baselines. Additionally, we conduct a human evaluation to assess the quality of these style descriptions, validating their utility as explanations for the latent space. Finally, we investigate whether human performance on the challenging AA task improves when aided by our system's explanations, finding an average improvement of around +20% in accuracy.
用于文体分析和可解释作者归属的潜空间解释法
最近最先进的作者归属方法是在一个不可解释的潜在空间中学习文本的作者归属表述,这阻碍了它们在现实世界中的应用。我们的工作提出了一种新颖的方法来解释这些学习到的嵌入,即识别潜在空间中的代表性点,并利用 LLM 生成对每个点的写作风格的翔实的自然语言描述。我们评估了我们的可解释空间与潜在空间的对齐情况,发现与其他基线相比,它实现了最好的预测一致性。此外,我们还进行了人工评估,以评估这些风格描述的质量,验证它们作为潜在空间解释的实用性。最后,我们研究了在我们系统的解释帮助下,人类在具有挑战性的 AA 任务中的表现是否有所改善,结果发现平均改善了约 +20% 的不准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信