Focal adhesion kinase-mediated interaction between tumor and immune cells in the tumor microenvironment: implications for cancer-associated therapies and tumor progression
{"title":"Focal adhesion kinase-mediated interaction between tumor and immune cells in the tumor microenvironment: implications for cancer-associated therapies and tumor progression","authors":"Louis Boafo Kwantwi, Theophilus Tandoh","doi":"10.1007/s12094-024-03723-x","DOIUrl":null,"url":null,"abstract":"<p>Focal adhesion kinase (FAK) expression has been linked to tumor growth, immunosuppression, metastasis, angiogenesis, and therapeutic resistance through kinase-dependent and kinase scaffolding functions in the nucleus and cytoplasm. Hence, targeting FAK alone or with other agents has gained attention as a potential therapeutic strategy. Moreover, mounting evidence shows that FAK activity can influence the tumor immune microenvironment crosstalk to support tumor progression. Recently, tumor immune microenvironment interaction orchestrators have shown to be promising therapeutic agents for cancer immunotherapies. Therefore, this review highlights how FAK regulates the tumor immune microenvironment interplay to promote tumor immune evasive mechanisms and their potential for combination therapies with standard cancer treatments.</p>","PeriodicalId":10166,"journal":{"name":"Clinical and Translational Oncology","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Translational Oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12094-024-03723-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Focal adhesion kinase (FAK) expression has been linked to tumor growth, immunosuppression, metastasis, angiogenesis, and therapeutic resistance through kinase-dependent and kinase scaffolding functions in the nucleus and cytoplasm. Hence, targeting FAK alone or with other agents has gained attention as a potential therapeutic strategy. Moreover, mounting evidence shows that FAK activity can influence the tumor immune microenvironment crosstalk to support tumor progression. Recently, tumor immune microenvironment interaction orchestrators have shown to be promising therapeutic agents for cancer immunotherapies. Therefore, this review highlights how FAK regulates the tumor immune microenvironment interplay to promote tumor immune evasive mechanisms and their potential for combination therapies with standard cancer treatments.