Single proton tight coupling in the bacterial flagellar motor

IF 0.8 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Caden Kesselring, Andrew McGovern, Ilyong Jung
{"title":"Single proton tight coupling in the bacterial flagellar motor","authors":"Caden Kesselring,&nbsp;Andrew McGovern,&nbsp;Ilyong Jung","doi":"10.1007/s40042-024-01160-1","DOIUrl":null,"url":null,"abstract":"<div><p>The bacterial flagellar motor is the largest and most complex biological rotary machine that exerts a torque of up to about 1000 pN to propel the swimming of flagellated bacteria. It is embedded in the cell membrane and consists of a 40 nm rotor and about 11 stators. Each stator unit, a torque generating protein complex, is driven by the proton motive force, a proton electrochemical gradient across the inner membrane. However, despite much progress, we lack sufficient evidence of how the ion flow is coupled to motor rotation. Here, we measured the motor speed as a function of the number of stators and found that the number of stators is linearly proportional to the motor speed. Our measurement shows that each stator passes about 24 ions per revolution, indicating that each proton flow can generate torque to drive the motor rotation about 14 degrees which is consistent with 26-fold periodic due to 26 FliG subunits. This result shows that the fixed number of ions yields a constant motor rotation independent of the number of stators and motor speed, indicating proton tight coupling between torque generation and proton flux.</p></div>","PeriodicalId":677,"journal":{"name":"Journal of the Korean Physical Society","volume":"85 8","pages":"691 - 697"},"PeriodicalIF":0.8000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Physical Society","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s40042-024-01160-1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The bacterial flagellar motor is the largest and most complex biological rotary machine that exerts a torque of up to about 1000 pN to propel the swimming of flagellated bacteria. It is embedded in the cell membrane and consists of a 40 nm rotor and about 11 stators. Each stator unit, a torque generating protein complex, is driven by the proton motive force, a proton electrochemical gradient across the inner membrane. However, despite much progress, we lack sufficient evidence of how the ion flow is coupled to motor rotation. Here, we measured the motor speed as a function of the number of stators and found that the number of stators is linearly proportional to the motor speed. Our measurement shows that each stator passes about 24 ions per revolution, indicating that each proton flow can generate torque to drive the motor rotation about 14 degrees which is consistent with 26-fold periodic due to 26 FliG subunits. This result shows that the fixed number of ions yields a constant motor rotation independent of the number of stators and motor speed, indicating proton tight coupling between torque generation and proton flux.

Abstract Image

细菌鞭毛马达中的单质子紧密耦合
细菌鞭毛马达是最大、最复杂的生物旋转机器,可产生高达约 1000 pN 的扭矩,推动鞭毛细菌游动。它嵌入细胞膜中,由一个 40 纳米的转子和大约 11 个定子组成。每个定子单元都是一个产生扭矩的蛋白质复合物,由质子动力(质子在内膜上的电化学梯度)驱动。然而,尽管取得了很大进展,我们仍然缺乏足够的证据来证明离子流是如何与马达旋转联系在一起的。在这里,我们测量了马达速度与定子数量的函数关系,发现定子数量与马达速度成线性比例。我们的测量结果表明,每个定子每转一圈可通过约 24 个离子,这表明每个质子流可产生的扭矩可驱动马达旋转约 14 度,这与 26 个 FliG 亚基所产生的 26 倍周期是一致的。这一结果表明,固定数量的离子可产生恒定的电机旋转,而与定子数量和电机速度无关,这表明质子在产生扭矩和质子通量之间的紧密耦合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of the Korean Physical Society
Journal of the Korean Physical Society PHYSICS, MULTIDISCIPLINARY-
CiteScore
1.20
自引率
16.70%
发文量
276
审稿时长
5.5 months
期刊介绍: The Journal of the Korean Physical Society (JKPS) covers all fields of physics spanning from statistical physics and condensed matter physics to particle physics. The manuscript to be published in JKPS is required to hold the originality, significance, and recent completeness. The journal is composed of Full paper, Letters, and Brief sections. In addition, featured articles with outstanding results are selected by the Editorial board and introduced in the online version. For emphasis on aspect of international journal, several world-distinguished researchers join the Editorial board. High quality of papers may be express-published when it is recommended or requested.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信