Seonwoo Park, Kyoung Hwa Kim, Suhyun Mun, Injun Jeon, Seon Jin Mun, Young-Hun Cho, Jeongbin Heo, Min Yang, Hyung Soo Ahn, Hunsoo Jeon, Jae Hak Lee, Kwanghee Jung, Won Jae Lee, Geon-Hee Lee, Myeong-Cheol Shin, Jong-Min Oh, Weon Ho Shin, Minkyung Kim, Sang-Mo Koo, Ye Hwan Kang
{"title":"Advanced HVPE sublimation sandwich method for Si layer formation on SiC substrates","authors":"Seonwoo Park, Kyoung Hwa Kim, Suhyun Mun, Injun Jeon, Seon Jin Mun, Young-Hun Cho, Jeongbin Heo, Min Yang, Hyung Soo Ahn, Hunsoo Jeon, Jae Hak Lee, Kwanghee Jung, Won Jae Lee, Geon-Hee Lee, Myeong-Cheol Shin, Jong-Min Oh, Weon Ho Shin, Minkyung Kim, Sang-Mo Koo, Ye Hwan Kang","doi":"10.1007/s40042-024-01170-z","DOIUrl":null,"url":null,"abstract":"<div><p>An advanced hydride vapor-phase epitaxy (HVPE) method was used to improve the sublimation sandwich method for the formation of Si layers on SiC substrates. In this study, a graphite boat structure with a vertical source and growth zones was used, and the sublimation sandwich method was improved by directly attaching two substrates (without any spacing between them) differently from that of the existing sublimation sandwich method. After the deposition of the amorphous Si layer (using sputtering) on an SiC substrate, the recrystalline Si layer was formed at a temperature of 1250 °C using a SiCl<sub>n</sub> source. Consequently, an Si layer with characteristics different from those of the sputtered Si layer was grown. The formed Si layer was characterized using field-emission scanning electron microscopy, energy-dispersive spectroscopy, high-resolution X-ray diffraction, X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and atomic force microscopy. Overall, we propose an advanced HVPE sublimation sandwich method for forming Si layers on SiC substrates.</p></div>","PeriodicalId":677,"journal":{"name":"Journal of the Korean Physical Society","volume":"85 10","pages":"810 - 824"},"PeriodicalIF":0.8000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Physical Society","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s40042-024-01170-z","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
An advanced hydride vapor-phase epitaxy (HVPE) method was used to improve the sublimation sandwich method for the formation of Si layers on SiC substrates. In this study, a graphite boat structure with a vertical source and growth zones was used, and the sublimation sandwich method was improved by directly attaching two substrates (without any spacing between them) differently from that of the existing sublimation sandwich method. After the deposition of the amorphous Si layer (using sputtering) on an SiC substrate, the recrystalline Si layer was formed at a temperature of 1250 °C using a SiCln source. Consequently, an Si layer with characteristics different from those of the sputtered Si layer was grown. The formed Si layer was characterized using field-emission scanning electron microscopy, energy-dispersive spectroscopy, high-resolution X-ray diffraction, X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and atomic force microscopy. Overall, we propose an advanced HVPE sublimation sandwich method for forming Si layers on SiC substrates.
期刊介绍:
The Journal of the Korean Physical Society (JKPS) covers all fields of physics spanning from statistical physics and condensed matter physics to particle physics. The manuscript to be published in JKPS is required to hold the originality, significance, and recent completeness. The journal is composed of Full paper, Letters, and Brief sections. In addition, featured articles with outstanding results are selected by the Editorial board and introduced in the online version. For emphasis on aspect of international journal, several world-distinguished researchers join the Editorial board. High quality of papers may be express-published when it is recommended or requested.