Jiyoung Choi, Kiun Cheong, Seungwon Han, Jun Yeob Lee
{"title":"Narrowband Emission in Pt(II) Complexes via Ligand Engineering for Blue Phosphorescent Organic Light-Emitting Diodes","authors":"Jiyoung Choi, Kiun Cheong, Seungwon Han, Jun Yeob Lee","doi":"10.1002/adom.202401451","DOIUrl":null,"url":null,"abstract":"<p>In this study, three stable tetradentate Pt(II) complexes are synthesized and characterized, namely, <b>Pt-biPh, Pt-biPh5tBu</b>, and <b>Pt-biPh4tBu</b>, tailored for blue phosphorescent organic light-emitting diodes to realize high-efficiency and narrowband emissions via ligand engineering. Biphenyl (<b>Pt-biPh</b>) or <i>tert</i>-butyl-modified biphenyl (<b>Pt-biPh5tBu</b> and <b>Pt-biPh4tBu</b>) is introduced into the carbene unit of the ligand to control the intermolecular interactions between the Pt(II) phosphors. <b>Pt-biPh, Pt-biPh5tBu</b>, and <b>Pt-biPh4tBu</b> exhibit high photoluminescence quantum yields of 74%, 84%, and 92% with exciton lifetimes of 2.2, 2.3, and 2.5 µs, respectively, demonstrating rapid and efficient light emission. Furthermore, <b>Pt-biPh</b>, <b>Pt-biPh5tBu</b>, and <b>Pt-biPh4tBu</b> show maximum external quantum efficiency (EQE) values of 18.1%, 19.0%, and 21.8%, respectively. <b>Pt-biPh5tBu</b> and <b>Pt-biPh4tBu</b> exhibit narrowband emission with a full width at half maximum of 21 nm owing to the small vibrational emission because of their sterically hindered and bulky ligand structures. Moreover, phosphor-sensitized thermally activated delayed fluorescence devices employing a <b>Pt-biPh4tBu</b> sensitizer achieve a high EQE of 28.6%. In particular, <b>Pt-biPh4tBu</b> performs better than the state-of-the-art phosphor as the sensitizer of the blue phosphor-sensitized thermally activated delayed fluorescence devices in terms of the EQE.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"12 31","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202401451","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, three stable tetradentate Pt(II) complexes are synthesized and characterized, namely, Pt-biPh, Pt-biPh5tBu, and Pt-biPh4tBu, tailored for blue phosphorescent organic light-emitting diodes to realize high-efficiency and narrowband emissions via ligand engineering. Biphenyl (Pt-biPh) or tert-butyl-modified biphenyl (Pt-biPh5tBu and Pt-biPh4tBu) is introduced into the carbene unit of the ligand to control the intermolecular interactions between the Pt(II) phosphors. Pt-biPh, Pt-biPh5tBu, and Pt-biPh4tBu exhibit high photoluminescence quantum yields of 74%, 84%, and 92% with exciton lifetimes of 2.2, 2.3, and 2.5 µs, respectively, demonstrating rapid and efficient light emission. Furthermore, Pt-biPh, Pt-biPh5tBu, and Pt-biPh4tBu show maximum external quantum efficiency (EQE) values of 18.1%, 19.0%, and 21.8%, respectively. Pt-biPh5tBu and Pt-biPh4tBu exhibit narrowband emission with a full width at half maximum of 21 nm owing to the small vibrational emission because of their sterically hindered and bulky ligand structures. Moreover, phosphor-sensitized thermally activated delayed fluorescence devices employing a Pt-biPh4tBu sensitizer achieve a high EQE of 28.6%. In particular, Pt-biPh4tBu performs better than the state-of-the-art phosphor as the sensitizer of the blue phosphor-sensitized thermally activated delayed fluorescence devices in terms of the EQE.
期刊介绍:
Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.