Adam Myszczyszyn, Anna Muench, Vivian Lehmann, Theo Sinnige, Frank G. van Steenbeek, Manon Bouwmeester, Roos-Anne Samsom, Marit Keuper-Navis, Thomas K. van der Made, Daniel Kogan, Sarah Braem, Luc J. W. van der Laan, Hossein Eslami Amirabadi, Evita van de Steeg, Rosalinde Masereeuw, Bart Spee
{"title":"A hollow fiber membrane-based liver organoid-on-a-chip model for examining drug metabolism and transport","authors":"Adam Myszczyszyn, Anna Muench, Vivian Lehmann, Theo Sinnige, Frank G. van Steenbeek, Manon Bouwmeester, Roos-Anne Samsom, Marit Keuper-Navis, Thomas K. van der Made, Daniel Kogan, Sarah Braem, Luc J. W. van der Laan, Hossein Eslami Amirabadi, Evita van de Steeg, Rosalinde Masereeuw, Bart Spee","doi":"10.1101/2024.08.12.607504","DOIUrl":null,"url":null,"abstract":"Liver-on-a-chip models predictive for both metabolism as well as canalicular and blood transport of drug candidates in humans are lacking. Here, we established an advanced, bioengineered and animal component-free hepatocyte-like millifluidic system based on 3D hollow fiber membranes (HFMs), recombinant human laminin 332 coating and adult human stem cell-derived organoids. Organoid fragments formed polarized and tight monolayers on HFMs with improved hepatocyte-like maturation, as compared to standard 3D organoid cultures in Matrigel from matched donors. Gene expression profiling and immunofluorescence revealed that hepatocyte-like monolayers expressed a broad panel of phase I (e.g., CYP3A4, CYP2D6) and II (UGTs, SULTs) drug-metabolizing enzymes and drug transporters (e.g., OATP1B3, MDR1 and MRP3). Moreover, statically cultured monolayers displayed phase I and II metabolism of a cocktail of six relevant compounds, including midazolam and 7-hydroxycoumarin. We also demonstrated the disposition of midazolam in the basal/blood-like circulation and apical/canalicular-like compartment of the millifluidic chip. Finally, we connected the system to the other two PK/ADME-most relevant organ systems, i.e. small intestine- and kidney proximal tubule-like to study the bioavailability of midazolam and coumarin, and excretion of metformin. In conclusion, we generated a proof-of-concept liver organoid-on-a-chip model for examining metabolism and transport of drugs, which can be further developed to predict PK/ADME profiles in humans.","PeriodicalId":501518,"journal":{"name":"bioRxiv - Pharmacology and Toxicology","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Pharmacology and Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.12.607504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Liver-on-a-chip models predictive for both metabolism as well as canalicular and blood transport of drug candidates in humans are lacking. Here, we established an advanced, bioengineered and animal component-free hepatocyte-like millifluidic system based on 3D hollow fiber membranes (HFMs), recombinant human laminin 332 coating and adult human stem cell-derived organoids. Organoid fragments formed polarized and tight monolayers on HFMs with improved hepatocyte-like maturation, as compared to standard 3D organoid cultures in Matrigel from matched donors. Gene expression profiling and immunofluorescence revealed that hepatocyte-like monolayers expressed a broad panel of phase I (e.g., CYP3A4, CYP2D6) and II (UGTs, SULTs) drug-metabolizing enzymes and drug transporters (e.g., OATP1B3, MDR1 and MRP3). Moreover, statically cultured monolayers displayed phase I and II metabolism of a cocktail of six relevant compounds, including midazolam and 7-hydroxycoumarin. We also demonstrated the disposition of midazolam in the basal/blood-like circulation and apical/canalicular-like compartment of the millifluidic chip. Finally, we connected the system to the other two PK/ADME-most relevant organ systems, i.e. small intestine- and kidney proximal tubule-like to study the bioavailability of midazolam and coumarin, and excretion of metformin. In conclusion, we generated a proof-of-concept liver organoid-on-a-chip model for examining metabolism and transport of drugs, which can be further developed to predict PK/ADME profiles in humans.