Solar Water Heating Systems Performance with Different Enhancement Techniques: A Detailed Review

IF 1.204 Q3 Energy
Ashraf Mimi Elsaid, Ahmed A.A. Attia, Ashraf Lashin, Rana Salama
{"title":"Solar Water Heating Systems Performance with Different Enhancement Techniques: A Detailed Review","authors":"Ashraf Mimi Elsaid,&nbsp;Ahmed A.A. Attia,&nbsp;Ashraf Lashin,&nbsp;Rana Salama","doi":"10.3103/S0003701X24600322","DOIUrl":null,"url":null,"abstract":"<p>Considering the global fuel crisis, countries have made it imperative to exploit solar energy correctly, which has emerged as the most significant renewable energy source in recent times. Utilizing solar energy to heat the water appropriately to reduce global energy consumption is a challenge most countries face. Research has, therefore, been done extensively to maximize the performance of solar water heating through various applications. Several methods were enumerated and applied in this review study to determine how to enhance the performance of solar water heaters. Eleven techniques for improvement were identified. They are as follows: using nanofluid with phase change material; improving the collector design; coating; lowering the inlet water temperature; switching to a combined system in place of the conventional gas heating system; utilizing a dual glass cover; utilizing the upstream delta wing; utilizing the evacuated tube collector; utilizing the heat exchanger; utilizing the photovoltaic glass unit; and integrating the solar water heater and tubular lighting device into one unit. According to the essential results, using an absorption cooling system with solar power resulted in 34% electricity savings. The absorption system was enhanced, and the COP was raised to 2.75 by implementing the solar water heating system. Solar heating systems combined with PCM achieved the highest efficiency rating of 65%. The dryer system’s CO<sub>2</sub> emissions were lowered by about 34% when adding a solar collector. The solar water heater’s thermal efficiency was increased by 22.53% by a CuO/H<sub>2</sub>O nanofluid.</p>","PeriodicalId":475,"journal":{"name":"Applied Solar Energy","volume":null,"pages":null},"PeriodicalIF":1.2040,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Solar Energy","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.3103/S0003701X24600322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

Considering the global fuel crisis, countries have made it imperative to exploit solar energy correctly, which has emerged as the most significant renewable energy source in recent times. Utilizing solar energy to heat the water appropriately to reduce global energy consumption is a challenge most countries face. Research has, therefore, been done extensively to maximize the performance of solar water heating through various applications. Several methods were enumerated and applied in this review study to determine how to enhance the performance of solar water heaters. Eleven techniques for improvement were identified. They are as follows: using nanofluid with phase change material; improving the collector design; coating; lowering the inlet water temperature; switching to a combined system in place of the conventional gas heating system; utilizing a dual glass cover; utilizing the upstream delta wing; utilizing the evacuated tube collector; utilizing the heat exchanger; utilizing the photovoltaic glass unit; and integrating the solar water heater and tubular lighting device into one unit. According to the essential results, using an absorption cooling system with solar power resulted in 34% electricity savings. The absorption system was enhanced, and the COP was raised to 2.75 by implementing the solar water heating system. Solar heating systems combined with PCM achieved the highest efficiency rating of 65%. The dryer system’s CO2 emissions were lowered by about 34% when adding a solar collector. The solar water heater’s thermal efficiency was increased by 22.53% by a CuO/H2O nanofluid.

Abstract Image

Abstract Image

采用不同增强技术的太阳能热水系统性能:详细回顾
摘要考虑到全球燃料危机,各国已将正确利用太阳能作为当务之急,太阳能已成为近代最重要的可再生能源。利用太阳能适当加热水以减少全球能源消耗是大多数国家面临的挑战。因此,为了通过各种应用最大限度地提高太阳能热水器的性能,人们进行了广泛的研究。本审查研究列举并应用了几种方法,以确定如何提高太阳能热水器的性能。确定了 11 项改进技术。它们是:使用带有相变材料的纳米流体;改进集热器设计;涂层;降低进水温度;改用组合系统代替传统的燃气加热系统;使用双玻璃盖;使用上游三角翼;使用抽真空管集热器;使用热交换器;使用光电玻璃装置;以及将太阳能热水器和管式照明装置整合为一个装置。根据基本结果,利用太阳能发电的吸收式冷却系统节电 34%。通过采用太阳能热水系统,吸收系统得到了增强,COP 提高到了 2.75。与 PCM 相结合的太阳能加热系统效率最高,达到 65%。增加太阳能集热器后,烘干机系统的二氧化碳排放量降低了约 34%。通过使用 CuO/H2O 纳米流体,太阳能热水器的热效率提高了 22.53%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Solar Energy
Applied Solar Energy Energy-Renewable Energy, Sustainability and the Environment
CiteScore
2.50
自引率
0.00%
发文量
0
期刊介绍: Applied Solar Energy  is an international peer reviewed journal covers various topics of research and development studies on solar energy conversion and use: photovoltaics, thermophotovoltaics, water heaters, passive solar heating systems, drying of agricultural production, water desalination, solar radiation condensers, operation of Big Solar Oven, combined use of solar energy and traditional energy sources, new semiconductors for solar cells and thermophotovoltaic system photocells, engines for autonomous solar stations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信