Robust Bayes Treatment Choice with Partial Identification

Andrés Aradillas Fernández, José Luis Montiel Olea, Chen Qiu, Jörg Stoye, Serdil Tinda
{"title":"Robust Bayes Treatment Choice with Partial Identification","authors":"Andrés Aradillas Fernández, José Luis Montiel Olea, Chen Qiu, Jörg Stoye, Serdil Tinda","doi":"arxiv-2408.11621","DOIUrl":null,"url":null,"abstract":"We study a class of binary treatment choice problems with partial\nidentification, through the lens of robust (multiple prior) Bayesian analysis.\nWe use a convenient set of prior distributions to derive ex-ante and ex-post\nrobust Bayes decision rules, both for decision makers who can randomize and for\ndecision makers who cannot. Our main messages are as follows: First, ex-ante and ex-post robust Bayes\ndecision rules do not tend to agree in general, whether or not randomized rules\nare allowed. Second, randomized treatment assignment for some data realizations\ncan be optimal in both ex-ante and, perhaps more surprisingly, ex-post\nproblems. Therefore, it is usually with loss of generality to exclude\nrandomized rules from consideration, even when regret is evaluated ex-post. We apply our results to a stylized problem where a policy maker uses\nexperimental data to choose whether to implement a new policy in a population\nof interest, but is concerned about the external validity of the experiment at\nhand (Stoye, 2012); and to the aggregation of data generated by multiple\nrandomized control trials in different sites to make a policy choice in a\npopulation for which no experimental data are available (Manski, 2020; Ishihara\nand Kitagawa, 2021).","PeriodicalId":501293,"journal":{"name":"arXiv - ECON - Econometrics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.11621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study a class of binary treatment choice problems with partial identification, through the lens of robust (multiple prior) Bayesian analysis. We use a convenient set of prior distributions to derive ex-ante and ex-post robust Bayes decision rules, both for decision makers who can randomize and for decision makers who cannot. Our main messages are as follows: First, ex-ante and ex-post robust Bayes decision rules do not tend to agree in general, whether or not randomized rules are allowed. Second, randomized treatment assignment for some data realizations can be optimal in both ex-ante and, perhaps more surprisingly, ex-post problems. Therefore, it is usually with loss of generality to exclude randomized rules from consideration, even when regret is evaluated ex-post. We apply our results to a stylized problem where a policy maker uses experimental data to choose whether to implement a new policy in a population of interest, but is concerned about the external validity of the experiment at hand (Stoye, 2012); and to the aggregation of data generated by multiple randomized control trials in different sites to make a policy choice in a population for which no experimental data are available (Manski, 2020; Ishihara and Kitagawa, 2021).
部分识别的稳健贝叶斯治疗选择
我们通过稳健(多重先验)贝叶斯分析的视角,研究了一类具有部分识别性的二元治疗选择问题。我们使用一组方便的先验分布来推导事前和事后稳健贝叶斯决策规则,既适用于可以随机化的决策者,也适用于不能随机化的决策者。我们的主要信息如下:首先,无论是否允许随机规则,事前和事后稳健贝叶斯决策规则在一般情况下并不趋于一致。其次,某些数据实现的随机治疗分配在事前问题上可能是最优的,更令人惊讶的是,在事后问题上也可能是最优的。因此,通常情况下,即使事后评估遗憾,也不考虑随机化规则,这有失一般性。我们将结果应用于一个典型问题,即政策制定者利用实验数据选择是否在相关人群中实施一项新政策,但又担心实验的外部有效性(Stoye,2012);以及将不同地点的多随机对照试验产生的数据汇总,以便在没有实验数据的人群中做出政策选择(Manski,2020;Ishiharaand Kitagawa,2021)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信