Machine Learning and the Yield Curve: Tree-Based Macroeconomic Regime Switching

Siyu Bie, Francis X. Diebold, Jingyu He, Junye Li
{"title":"Machine Learning and the Yield Curve: Tree-Based Macroeconomic Regime Switching","authors":"Siyu Bie, Francis X. Diebold, Jingyu He, Junye Li","doi":"arxiv-2408.12863","DOIUrl":null,"url":null,"abstract":"We explore tree-based macroeconomic regime-switching in the context of the\ndynamic Nelson-Siegel (DNS) yield-curve model. In particular, we customize the\ntree-growing algorithm to partition macroeconomic variables based on the DNS\nmodel's marginal likelihood, thereby identifying regime-shifting patterns in\nthe yield curve. Compared to traditional Markov-switching models, our model\noffers clear economic interpretation via macroeconomic linkages and ensures\ncomputational simplicity. In an empirical application to U.S. Treasury bond\nyields, we find (1) important yield curve regime switching, and (2) evidence\nthat macroeconomic variables have predictive power for the yield curve when the\nshort rate is high, but not in other regimes, thereby refining the notion of\nyield curve ``macro-spanning\".","PeriodicalId":501293,"journal":{"name":"arXiv - ECON - Econometrics","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.12863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We explore tree-based macroeconomic regime-switching in the context of the dynamic Nelson-Siegel (DNS) yield-curve model. In particular, we customize the tree-growing algorithm to partition macroeconomic variables based on the DNS model's marginal likelihood, thereby identifying regime-shifting patterns in the yield curve. Compared to traditional Markov-switching models, our model offers clear economic interpretation via macroeconomic linkages and ensures computational simplicity. In an empirical application to U.S. Treasury bond yields, we find (1) important yield curve regime switching, and (2) evidence that macroeconomic variables have predictive power for the yield curve when the short rate is high, but not in other regimes, thereby refining the notion of yield curve ``macro-spanning".
机器学习与收益率曲线:基于树的宏观经济制度转换
我们以动态 Nelson-Siegel(DNS)收益率曲线模型为背景,探讨了基于树的宏观经济制度转换。特别是,我们定制了树状生长算法,以根据 DNS 模型的边际似然率划分宏观经济变量,从而识别收益率曲线的制度转换模式。与传统的马尔可夫转换模型相比,我们的模型通过宏观经济联系提供了清晰的经济解释,并确保了计算的简便性。在对美国国债收益率的实证应用中,我们发现:(1)收益率曲线存在重要的制度转换;(2)有证据表明,当空头利率较高时,宏观经济变量对收益率曲线具有预测能力,但在其他制度下则没有,从而完善了收益率曲线 "宏观跨度 "的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信