The effects of data preprocessing on probability of default model fairness

Di Wu
{"title":"The effects of data preprocessing on probability of default model fairness","authors":"Di Wu","doi":"arxiv-2408.15452","DOIUrl":null,"url":null,"abstract":"In the context of financial credit risk evaluation, the fairness of machine\nlearning models has become a critical concern, especially given the potential\nfor biased predictions that disproportionately affect certain demographic\ngroups. This study investigates the impact of data preprocessing, with a\nspecific focus on Truncated Singular Value Decomposition (SVD), on the fairness\nand performance of probability of default models. Using a comprehensive dataset\nsourced from Kaggle, various preprocessing techniques, including SVD, were\napplied to assess their effect on model accuracy, discriminatory power, and\nfairness.","PeriodicalId":501293,"journal":{"name":"arXiv - ECON - Econometrics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the context of financial credit risk evaluation, the fairness of machine learning models has become a critical concern, especially given the potential for biased predictions that disproportionately affect certain demographic groups. This study investigates the impact of data preprocessing, with a specific focus on Truncated Singular Value Decomposition (SVD), on the fairness and performance of probability of default models. Using a comprehensive dataset sourced from Kaggle, various preprocessing techniques, including SVD, were applied to assess their effect on model accuracy, discriminatory power, and fairness.
数据预处理对违约概率模型公平性的影响
在金融信用风险评估方面,机器学习模型的公平性已成为一个重要问题,特别是考虑到有可能出现偏差的预测,对某些人口群体造成不成比例的影响。本研究探讨了数据预处理对违约概率模型的公平性和性能的影响,重点是截断奇异值分解(SVD)。利用从 Kaggle 获取的综合数据集,应用了包括 SVD 在内的各种预处理技术,以评估它们对模型准确性、判别力和公平性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信