{"title":"Taylor theory in quantum calculus: a general approach","authors":"Enas M. Shehata, Rasha M. El Zafarani","doi":"10.2989/16073606.2024.2396517","DOIUrl":null,"url":null,"abstract":"Let the function β be strictly increasing and continuous on an interval I ⊂ ℝ. The β-difference operator is defined by Dβ f (t) = (f(β(t)) − f(t)/(β(t) – t), where t ≠ β(t), and Dβ f (t) = f′ t(t) ...","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2989/16073606.2024.2396517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let the function β be strictly increasing and continuous on an interval I ⊂ ℝ. The β-difference operator is defined by Dβ f (t) = (f(β(t)) − f(t)/(β(t) – t), where t ≠ β(t), and Dβ f (t) = f′ t(t) ...