Testing for a Forecast Accuracy Breakdown under Long Memory

Jannik Kreye, Philipp Sibbertsen
{"title":"Testing for a Forecast Accuracy Breakdown under Long Memory","authors":"Jannik Kreye, Philipp Sibbertsen","doi":"arxiv-2409.07087","DOIUrl":null,"url":null,"abstract":"We propose a test to detect a forecast accuracy breakdown in a long memory\ntime series and provide theoretical and simulation evidence on the memory\ntransfer from the time series to the forecast residuals. The proposed method\nuses a double sup-Wald test against the alternative of a structural break in\nthe mean of an out-of-sample loss series. To address the problem of estimating\nthe long-run variance under long memory, a robust estimator is applied. The\ncorresponding breakpoint results from a long memory robust CUSUM test. The\nfinite sample size and power properties of the test are derived in a Monte\nCarlo simulation. A monotonic power function is obtained for the fixed\nforecasting scheme. In our practical application, we find that the global\nenergy crisis that began in 2021 led to a forecast break in European\nelectricity prices, while the results for the U.S. are mixed.","PeriodicalId":501293,"journal":{"name":"arXiv - ECON - Econometrics","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a test to detect a forecast accuracy breakdown in a long memory time series and provide theoretical and simulation evidence on the memory transfer from the time series to the forecast residuals. The proposed method uses a double sup-Wald test against the alternative of a structural break in the mean of an out-of-sample loss series. To address the problem of estimating the long-run variance under long memory, a robust estimator is applied. The corresponding breakpoint results from a long memory robust CUSUM test. The finite sample size and power properties of the test are derived in a Monte Carlo simulation. A monotonic power function is obtained for the fixed forecasting scheme. In our practical application, we find that the global energy crisis that began in 2021 led to a forecast break in European electricity prices, while the results for the U.S. are mixed.
测试长时记忆下的预测准确性分解
我们提出了一种检验方法来检测长记忆时间序列中的预测准确性中断,并提供了从时间序列到预测残差的记忆转移的理论和模拟证据。针对样本外损失序列均值出现结构性断裂的替代方案,所提出的方法使用了双 sup-Wald 检验。为了解决长记忆下的长期方差估计问题,应用了稳健估计器。相应的断点来自于长记忆稳健 CUSUM 检验。通过 MonteCarlo 仿真推导出该检验的无限样本大小和幂次特性。固定预测方案获得了单调幂函数。在实际应用中,我们发现始于 2021 年的全球能源危机导致欧洲电价预测中断,而美国的结果则好坏参半。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信