Emergence of condensation patterns in kinetic equations for opinion dynamics

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
E. Calzola , G. Dimarco , G. Toscani , M. Zanella
{"title":"Emergence of condensation patterns in kinetic equations for opinion dynamics","authors":"E. Calzola ,&nbsp;G. Dimarco ,&nbsp;G. Toscani ,&nbsp;M. Zanella","doi":"10.1016/j.physd.2024.134356","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we define a class of models to understand the impact of population size on opinion formation dynamics, a phenomenon usually related to group conformity. To this end, we introduce a new kinetic model in which the interaction frequency is weighted by the kinetic density. In the quasi-invariant regime, this model reduces to a Kaniadakis–Quarati-type equation with nonlinear drift, originally introduced for the dynamics of bosons in a spatially homogeneous setting. From the obtained PDE for the evolution of the opinion density, we determine the regime of parameters for which a critical mass exists and triggers blow-up of the solution. Therefore, the model is capable of describing strong conformity phenomena in cases where the total density of individuals holding a given opinion exceeds a fixed critical size. In the final part, several numerical experiments demonstrate the features of the introduced class of models and the related consensus effects.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167278924003063/pdfft?md5=81e149d406cc9a5bc7fa5ed97bb4cab4&pid=1-s2.0-S0167278924003063-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924003063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we define a class of models to understand the impact of population size on opinion formation dynamics, a phenomenon usually related to group conformity. To this end, we introduce a new kinetic model in which the interaction frequency is weighted by the kinetic density. In the quasi-invariant regime, this model reduces to a Kaniadakis–Quarati-type equation with nonlinear drift, originally introduced for the dynamics of bosons in a spatially homogeneous setting. From the obtained PDE for the evolution of the opinion density, we determine the regime of parameters for which a critical mass exists and triggers blow-up of the solution. Therefore, the model is capable of describing strong conformity phenomena in cases where the total density of individuals holding a given opinion exceeds a fixed critical size. In the final part, several numerical experiments demonstrate the features of the introduced class of models and the related consensus effects.

舆论动力学动力学方程中出现的凝结模式
在这项工作中,我们定义了一类模型,以了解群体规模对意见形成动态的影响,这种现象通常与群体一致性有关。为此,我们引入了一个新的动力学模型,在该模型中,互动频率由动力学密度加权。在准不变体系中,该模型简化为具有非线性漂移的 Kaniadakis-Quarati- 型方程,该方程最初是为空间均质环境中玻色子的动力学而引入的。根据所得到的舆论密度演化的 PDE,我们确定了存在临界质量并引发解爆炸的参数体系。因此,在持有特定观点的个体总密度超过固定临界规模的情况下,该模型能够描述强一致性现象。最后,几个数值实验证明了所引入模型的特点以及相关的共识效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信