Prioritized Information Bottleneck Theoretic Framework with Distributed Online Learning for Edge Video Analytics

Zhengru Fang, Senkang Hu, Jingjing Wang, Yiqin Deng, Xianhao Chen, Yuguang Fang
{"title":"Prioritized Information Bottleneck Theoretic Framework with Distributed Online Learning for Edge Video Analytics","authors":"Zhengru Fang, Senkang Hu, Jingjing Wang, Yiqin Deng, Xianhao Chen, Yuguang Fang","doi":"arxiv-2409.00146","DOIUrl":null,"url":null,"abstract":"Collaborative perception systems leverage multiple edge devices, such\nsurveillance cameras or autonomous cars, to enhance sensing quality and\neliminate blind spots. Despite their advantages, challenges such as limited\nchannel capacity and data redundancy impede their effectiveness. To address\nthese issues, we introduce the Prioritized Information Bottleneck (PIB)\nframework for edge video analytics. This framework prioritizes the shared data\nbased on the signal-to-noise ratio (SNR) and camera coverage of the region of\ninterest (RoI), reducing spatial-temporal data redundancy to transmit only\nessential information. This strategy avoids the need for video reconstruction\nat edge servers and maintains low latency. It leverages a deterministic\ninformation bottleneck method to extract compact, relevant features, balancing\ninformativeness and communication costs. For high-dimensional data, we apply\nvariational approximations for practical optimization. To reduce communication\ncosts in fluctuating connections, we propose a gate mechanism based on\ndistributed online learning (DOL) to filter out less informative messages and\nefficiently select edge servers. Moreover, we establish the asymptotic\noptimality of DOL by proving the sublinearity of their regrets. Compared to\nfive coding methods for image and video compression, PIB improves mean object\ndetection accuracy (MODA) while reducing 17.8% and reduces communication costs\nby 82.80% under poor channel conditions.","PeriodicalId":501280,"journal":{"name":"arXiv - CS - Networking and Internet Architecture","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Networking and Internet Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Collaborative perception systems leverage multiple edge devices, such surveillance cameras or autonomous cars, to enhance sensing quality and eliminate blind spots. Despite their advantages, challenges such as limited channel capacity and data redundancy impede their effectiveness. To address these issues, we introduce the Prioritized Information Bottleneck (PIB) framework for edge video analytics. This framework prioritizes the shared data based on the signal-to-noise ratio (SNR) and camera coverage of the region of interest (RoI), reducing spatial-temporal data redundancy to transmit only essential information. This strategy avoids the need for video reconstruction at edge servers and maintains low latency. It leverages a deterministic information bottleneck method to extract compact, relevant features, balancing informativeness and communication costs. For high-dimensional data, we apply variational approximations for practical optimization. To reduce communication costs in fluctuating connections, we propose a gate mechanism based on distributed online learning (DOL) to filter out less informative messages and efficiently select edge servers. Moreover, we establish the asymptotic optimality of DOL by proving the sublinearity of their regrets. Compared to five coding methods for image and video compression, PIB improves mean object detection accuracy (MODA) while reducing 17.8% and reduces communication costs by 82.80% under poor channel conditions.
针对边缘视频分析的分布式在线学习优先信息瓶颈理论框架
协作感知系统利用多个边缘设备(如监控摄像头或自动驾驶汽车)来提高感知质量并消除盲点。尽管协同感知系统有其优势,但有限的信道容量和数据冗余等挑战阻碍了其有效性。为了解决这些问题,我们为边缘视频分析引入了优先信息瓶颈(PIB)框架。该框架根据感兴趣区域(RoI)的信噪比(SNR)和摄像机覆盖范围确定共享数据库的优先级,减少时空数据冗余,只传输必要信息。这一策略避免了在边缘服务器上进行视频重构,并保持了较低的延迟。它利用确定性信息瓶颈法提取紧凑的相关特征,平衡了信息量和通信成本。对于高维数据,我们采用变量近似法进行实际优化。为了降低波动连接中的通信成本,我们提出了一种基于分布式在线学习(DOL)的门机制,以过滤掉信息量较少的信息,并有效地选择边缘服务器。此外,我们还通过证明其遗憾的亚线性,建立了 DOL 的渐进最优性。与用于图像和视频压缩的五种编码方法相比,PIB提高了平均物体检测精度(MODA),同时降低了17.8%,并在信道条件差的情况下降低了82.80%的通信成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信