{"title":"BUILDING MODELS IN SMALL CARDINALS IN LOCAL ABSTRACT ELEMENTARY CLASSES","authors":"MARCOS MAZARI-ARMIDA, WENTAO YANG","doi":"10.1017/jsl.2024.32","DOIUrl":null,"url":null,"abstract":"<p>There are many results in the literature where superstablity-like independence notions, without any categoricity assumptions, have been used to show the existence of larger models. In this paper we show that <span>stability</span> is enough to construct larger models for small cardinals assuming a mild locality condition for Galois types.<span>Theorem 0.1.</span><p>Suppose <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904081418552-0865:S002248122400032X:S002248122400032X_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\lambda <2^{\\aleph _0}$</span></span></img></span></span>. Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904081418552-0865:S002248122400032X:S002248122400032X_inline2.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathbf {K}}$</span></span></img></span></span> be an abstract elementary class with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904081418552-0865:S002248122400032X:S002248122400032X_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\lambda \\geq {\\operatorname {LS}}({\\mathbf {K}})$</span></span></img></span></span>. Assume <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904081418552-0865:S002248122400032X:S002248122400032X_inline4.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathbf {K}}$</span></span></img></span></span> has amalgamation in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904081418552-0865:S002248122400032X:S002248122400032X_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\lambda $</span></span></img></span></span>, no maximal model in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904081418552-0865:S002248122400032X:S002248122400032X_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\lambda $</span></span></img></span></span>, and is stable in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904081418552-0865:S002248122400032X:S002248122400032X_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$\\lambda $</span></span></img></span></span>. If <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904081418552-0865:S002248122400032X:S002248122400032X_inline8.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathbf {K}}$</span></span></img></span></span> is <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904081418552-0865:S002248122400032X:S002248122400032X_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$(<\\lambda ^+, \\lambda )$</span></span></img></span></span>-local, then <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904081418552-0865:S002248122400032X:S002248122400032X_inline10.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathbf {K}}$</span></span></img></span></span> has a model of cardinality <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904081418552-0865:S002248122400032X:S002248122400032X_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$\\lambda ^{++}$</span></span></img></span></span>.</p></p><p>The set theoretic assumption that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904081418552-0865:S002248122400032X:S002248122400032X_inline12.png\"><span data-mathjax-type=\"texmath\"><span>$\\lambda <2^{\\aleph _0}$</span></span></img></span></span> and model theoretic assumption of stability in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904081418552-0865:S002248122400032X:S002248122400032X_inline13.png\"><span data-mathjax-type=\"texmath\"><span>$\\lambda $</span></span></img></span></span> can be weakened to the model theoretic assumptions that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904081418552-0865:S002248122400032X:S002248122400032X_inline14.png\"><span data-mathjax-type=\"texmath\"><span>$|{\\mathbf {S}}^{na}(M)|< 2^{\\aleph _0}$</span></span></img></span></span> for every <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904081418552-0865:S002248122400032X:S002248122400032X_inline15.png\"><span data-mathjax-type=\"texmath\"><span>$M \\in {\\mathbf {K}}_\\lambda $</span></span></img></span></span> and stability for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904081418552-0865:S002248122400032X:S002248122400032X_inline16.png\"><span data-mathjax-type=\"texmath\"><span>$\\lambda $</span></span></img></span></span>-algebraic types in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904081418552-0865:S002248122400032X:S002248122400032X_inline17.png\"/><span data-mathjax-type=\"texmath\"><span>$\\lambda $</span></span></span></span>. This is a significant improvement of Theorem 0.1, as the result holds on some unstable abstract elementary classes.</p>","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Symbolic Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/jsl.2024.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
There are many results in the literature where superstablity-like independence notions, without any categoricity assumptions, have been used to show the existence of larger models. In this paper we show that stability is enough to construct larger models for small cardinals assuming a mild locality condition for Galois types.Theorem 0.1.
Suppose $\lambda <2^{\aleph _0}$. Let ${\mathbf {K}}$ be an abstract elementary class with $\lambda \geq {\operatorname {LS}}({\mathbf {K}})$. Assume ${\mathbf {K}}$ has amalgamation in $\lambda $, no maximal model in $\lambda $, and is stable in $\lambda $. If ${\mathbf {K}}$ is $(<\lambda ^+, \lambda )$-local, then ${\mathbf {K}}$ has a model of cardinality $\lambda ^{++}$.
The set theoretic assumption that $\lambda <2^{\aleph _0}$ and model theoretic assumption of stability in $\lambda $ can be weakened to the model theoretic assumptions that $|{\mathbf {S}}^{na}(M)|< 2^{\aleph _0}$ for every $M \in {\mathbf {K}}_\lambda $ and stability for $\lambda $-algebraic types in $\lambda $. This is a significant improvement of Theorem 0.1, as the result holds on some unstable abstract elementary classes.