BUILDING MODELS IN SMALL CARDINALS IN LOCAL ABSTRACT ELEMENTARY CLASSES

MARCOS MAZARI-ARMIDA, WENTAO YANG
{"title":"BUILDING MODELS IN SMALL CARDINALS IN LOCAL ABSTRACT ELEMENTARY CLASSES","authors":"MARCOS MAZARI-ARMIDA, WENTAO YANG","doi":"10.1017/jsl.2024.32","DOIUrl":null,"url":null,"abstract":"<p>There are many results in the literature where superstablity-like independence notions, without any categoricity assumptions, have been used to show the existence of larger models. In this paper we show that <span>stability</span> is enough to construct larger models for small cardinals assuming a mild locality condition for Galois types.<span>Theorem 0.1.</span><p>Suppose <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904081418552-0865:S002248122400032X:S002248122400032X_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\lambda &lt;2^{\\aleph _0}$</span></span></img></span></span>. Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904081418552-0865:S002248122400032X:S002248122400032X_inline2.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathbf {K}}$</span></span></img></span></span> be an abstract elementary class with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904081418552-0865:S002248122400032X:S002248122400032X_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\lambda \\geq {\\operatorname {LS}}({\\mathbf {K}})$</span></span></img></span></span>. Assume <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904081418552-0865:S002248122400032X:S002248122400032X_inline4.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathbf {K}}$</span></span></img></span></span> has amalgamation in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904081418552-0865:S002248122400032X:S002248122400032X_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\lambda $</span></span></img></span></span>, no maximal model in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904081418552-0865:S002248122400032X:S002248122400032X_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\lambda $</span></span></img></span></span>, and is stable in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904081418552-0865:S002248122400032X:S002248122400032X_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$\\lambda $</span></span></img></span></span>. If <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904081418552-0865:S002248122400032X:S002248122400032X_inline8.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathbf {K}}$</span></span></img></span></span> is <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904081418552-0865:S002248122400032X:S002248122400032X_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$(&lt;\\lambda ^+, \\lambda )$</span></span></img></span></span>-local, then <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904081418552-0865:S002248122400032X:S002248122400032X_inline10.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathbf {K}}$</span></span></img></span></span> has a model of cardinality <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904081418552-0865:S002248122400032X:S002248122400032X_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$\\lambda ^{++}$</span></span></img></span></span>.</p></p><p>The set theoretic assumption that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904081418552-0865:S002248122400032X:S002248122400032X_inline12.png\"><span data-mathjax-type=\"texmath\"><span>$\\lambda &lt;2^{\\aleph _0}$</span></span></img></span></span> and model theoretic assumption of stability in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904081418552-0865:S002248122400032X:S002248122400032X_inline13.png\"><span data-mathjax-type=\"texmath\"><span>$\\lambda $</span></span></img></span></span> can be weakened to the model theoretic assumptions that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904081418552-0865:S002248122400032X:S002248122400032X_inline14.png\"><span data-mathjax-type=\"texmath\"><span>$|{\\mathbf {S}}^{na}(M)|&lt; 2^{\\aleph _0}$</span></span></img></span></span> for every <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904081418552-0865:S002248122400032X:S002248122400032X_inline15.png\"><span data-mathjax-type=\"texmath\"><span>$M \\in {\\mathbf {K}}_\\lambda $</span></span></img></span></span> and stability for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904081418552-0865:S002248122400032X:S002248122400032X_inline16.png\"><span data-mathjax-type=\"texmath\"><span>$\\lambda $</span></span></img></span></span>-algebraic types in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904081418552-0865:S002248122400032X:S002248122400032X_inline17.png\"/><span data-mathjax-type=\"texmath\"><span>$\\lambda $</span></span></span></span>. This is a significant improvement of Theorem 0.1, as the result holds on some unstable abstract elementary classes.</p>","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Symbolic Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/jsl.2024.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

There are many results in the literature where superstablity-like independence notions, without any categoricity assumptions, have been used to show the existence of larger models. In this paper we show that stability is enough to construct larger models for small cardinals assuming a mild locality condition for Galois types.Theorem 0.1.

Suppose Abstract Image$\lambda <2^{\aleph _0}$. Let Abstract Image${\mathbf {K}}$ be an abstract elementary class with Abstract Image$\lambda \geq {\operatorname {LS}}({\mathbf {K}})$. Assume Abstract Image${\mathbf {K}}$ has amalgamation in Abstract Image$\lambda $, no maximal model in Abstract Image$\lambda $, and is stable in Abstract Image$\lambda $. If Abstract Image${\mathbf {K}}$ is Abstract Image$(<\lambda ^+, \lambda )$-local, then Abstract Image${\mathbf {K}}$ has a model of cardinality Abstract Image$\lambda ^{++}$.

The set theoretic assumption that Abstract Image$\lambda <2^{\aleph _0}$ and model theoretic assumption of stability in Abstract Image$\lambda $ can be weakened to the model theoretic assumptions that Abstract Image$|{\mathbf {S}}^{na}(M)|< 2^{\aleph _0}$ for every Abstract Image$M \in {\mathbf {K}}_\lambda $ and stability for Abstract Image$\lambda $-algebraic types in Abstract Image$\lambda $. This is a significant improvement of Theorem 0.1, as the result holds on some unstable abstract elementary classes.

在局部抽象初等类的小红心中建立模型
在文献中有许多结果,在这些结果中,类似超稳定性的独立性概念,在没有任何分类性假设的情况下,被用来证明更大模型的存在。在本文中,我们证明,假设伽罗瓦类型有一个温和的局部性条件,稳定性足以为小红心构建更大的模型。让${/mathbf {K}}$ 是一个抽象基本类,有$\lambda \geq {operatorname {LS}}({\mathbf {K}})$。如果 ${mathbf {K}}$ 是 $(<\lambda ^+, \lambda )$-local 的,那么 ${mathbf {K}}$ 有一个 cardinality $\lambda ^{++}$ 的模型。集合论中关于 $\lambda <2^{\aleph _0}$ 的假设和模型论中关于 $\lambda $ 稳定性的假设可以弱化为模型论中关于 $|{\mathbf {S}^{na}(M)|<;2^{aleph _0}$ 以及 $\lambda $ 中 $\lambda $ 代数类型的稳定性。这是对定理 0.1 的重大改进,因为该结果在一些不稳定的抽象基本类上成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信