Online Convex Optimization for On-Board Routing in High-Throughput Satellites

Olivier Bélanger, Jean-Luc Lupien, Olfa Ben Yahia, Stéphane Martel, Antoine Lesage-Landry, Gunes Karabulut Kurt
{"title":"Online Convex Optimization for On-Board Routing in High-Throughput Satellites","authors":"Olivier Bélanger, Jean-Luc Lupien, Olfa Ben Yahia, Stéphane Martel, Antoine Lesage-Landry, Gunes Karabulut Kurt","doi":"arxiv-2409.01488","DOIUrl":null,"url":null,"abstract":"The rise in low Earth orbit (LEO) satellite Internet services has led to\nincreasing demand, often exceeding available data rates and compromising the\nquality of service. While deploying more satellites offers a short-term fix,\ndesigning higher-performance satellites with enhanced transmission capabilities\nprovides a more sustainable solution. Achieving the necessary high capacity\nrequires interconnecting multiple modem banks within a satellite payload.\nHowever, there is a notable gap in research on internal packet routing within\nextremely high-throughput satellites. To address this, we propose a real-time\noptimal flow allocation and priority queue scheduling method using online\nconvex optimization-based model predictive control. We model the problem as a\nmulti-commodity flow instance and employ an online interior-point method to\nsolve the routing and scheduling optimization iteratively. This approach\nminimizes packet loss and supports real-time rerouting with low computational\noverhead. Our method is tested in simulation on a next-generation extremely\nhigh-throughput satellite model, demonstrating its effectiveness compared to a\nreference batch optimization and to traditional methods.","PeriodicalId":501280,"journal":{"name":"arXiv - CS - Networking and Internet Architecture","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Networking and Internet Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The rise in low Earth orbit (LEO) satellite Internet services has led to increasing demand, often exceeding available data rates and compromising the quality of service. While deploying more satellites offers a short-term fix, designing higher-performance satellites with enhanced transmission capabilities provides a more sustainable solution. Achieving the necessary high capacity requires interconnecting multiple modem banks within a satellite payload. However, there is a notable gap in research on internal packet routing within extremely high-throughput satellites. To address this, we propose a real-time optimal flow allocation and priority queue scheduling method using online convex optimization-based model predictive control. We model the problem as a multi-commodity flow instance and employ an online interior-point method to solve the routing and scheduling optimization iteratively. This approach minimizes packet loss and supports real-time rerouting with low computational overhead. Our method is tested in simulation on a next-generation extremely high-throughput satellite model, demonstrating its effectiveness compared to a reference batch optimization and to traditional methods.
高吞吐量卫星机载路由的在线凸优化
低地球轨道(LEO)卫星互联网服务的兴起导致需求不断增加,往往超出现有的数据传输速率,影响服务质量。虽然部署更多的卫星可以在短期内解决问题,但设计具有更强传输能力的高性能卫星则是一种更可持续的解决方案。然而,关于超高吞吐量卫星内部数据包路由的研究还存在明显空白。为了解决这个问题,我们提出了一种实时优化流量分配和优先队列调度方法,该方法使用基于在线凸优化的模型预测控制。我们将该问题建模为多商品流实例,并采用在线内点法迭代解决路由和调度优化问题。这种方法能最大限度地减少数据包丢失,并以较低的计算开销支持实时重新路由。我们的方法在下一代极高吞吐量卫星模型上进行了仿真测试,证明了它与批量优化和传统方法相比的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信