Image color consistency in datasets: the Smooth-TPS3D method

Ismael Benito-Altamirano, David Martínez-Carpena, Hanna Lizarzaburu-Aguilar, Carles Ventura, Cristian Fàbrega, Joan Daniel Prades
{"title":"Image color consistency in datasets: the Smooth-TPS3D method","authors":"Ismael Benito-Altamirano, David Martínez-Carpena, Hanna Lizarzaburu-Aguilar, Carles Ventura, Cristian Fàbrega, Joan Daniel Prades","doi":"arxiv-2409.05159","DOIUrl":null,"url":null,"abstract":"Image color consistency is the key problem in digital imaging consistency\nwhen creating datasets. Here, we propose an improved 3D Thin-Plate Splines\n(TPS3D) color correction method to be used, in conjunction with color charts\n(i.e. Macbeth ColorChecker) or other machine-readable patterns, to achieve\nimage consistency by post-processing. Also, we benchmark our method against its\nformer implementation and the alternative methods reported to date with an\naugmented dataset based on the Gehler's ColorChecker dataset. Benchmark\nincludes how corrected images resemble the ground-truth images and how fast\nthese implementations are. Results demonstrate that the TPS3D is the best\ncandidate to achieve image consistency. Furthermore, our Smooth-TPS3D method\nshows equivalent results compared to the original method and reduced the 11-15%\nof ill-conditioned scenarios which the previous method failed to less than 1%.\nMoreover, we demonstrate that the Smooth-TPS method is 20% faster than the\noriginal method. Finally, we discuss how different methods offer different\ncompromises between quality, correction accuracy and computational load.","PeriodicalId":501214,"journal":{"name":"arXiv - PHYS - Optics","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Image color consistency is the key problem in digital imaging consistency when creating datasets. Here, we propose an improved 3D Thin-Plate Splines (TPS3D) color correction method to be used, in conjunction with color charts (i.e. Macbeth ColorChecker) or other machine-readable patterns, to achieve image consistency by post-processing. Also, we benchmark our method against its former implementation and the alternative methods reported to date with an augmented dataset based on the Gehler's ColorChecker dataset. Benchmark includes how corrected images resemble the ground-truth images and how fast these implementations are. Results demonstrate that the TPS3D is the best candidate to achieve image consistency. Furthermore, our Smooth-TPS3D method shows equivalent results compared to the original method and reduced the 11-15% of ill-conditioned scenarios which the previous method failed to less than 1%. Moreover, we demonstrate that the Smooth-TPS method is 20% faster than the original method. Finally, we discuss how different methods offer different compromises between quality, correction accuracy and computational load.
数据集中的图像颜色一致性:平滑-TPS3D 方法
创建数据集时,图像色彩一致性是数字成像一致性的关键问题。在此,我们提出了一种改进的三维薄板样条(TPS3D)色彩校正方法,该方法可与色彩图表(即 Macbeth ColorChecker)或其他机器可读模式结合使用,通过后处理实现图像一致性。此外,我们还利用基于 Gehler's ColorChecker 数据集的增强数据集,将我们的方法与它的变形器实现方法和迄今为止报道的替代方法进行了比较。基准包括修正后的图像与地面实况图像的相似程度,以及这些实现方法的速度。结果表明,TPS3D 是实现图像一致性的最佳候选方案。此外,与原始方法相比,我们的 Smooth-TPS3D 方法显示了同等的结果,并将先前方法失败的 11-15% 条件不良场景减少到 1%以下。最后,我们讨论了不同方法如何在质量、修正精度和计算负荷之间做出不同的妥协。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信