Real-time optical gas sensing with two-dimensional materials

Gia Quyet Ngo, Chanaprom Cholsuk, Sebastian Thiele, Ziyang Gan, Antony George, Joerg Pezoldt, Andrey Turchanin, Tobias Vogl, Falk Eilenberger
{"title":"Real-time optical gas sensing with two-dimensional materials","authors":"Gia Quyet Ngo, Chanaprom Cholsuk, Sebastian Thiele, Ziyang Gan, Antony George, Joerg Pezoldt, Andrey Turchanin, Tobias Vogl, Falk Eilenberger","doi":"arxiv-2409.05693","DOIUrl":null,"url":null,"abstract":"Two-dimensional transition metal dichalcogenides (TMDs) are highly appealing\nfor gas sensors, lab-on-a-chip devices and bio-sensing applications because of\ntheir strong light-matter interaction and high surface-to-volume ratio. The\nability to grow these van der Waals materials on different substrates and\nwaveguide geometries opens a horizon toward scalable on-chip photonic\nnanodevices. Here, we report on a versatile technique for real time remote\noptical gas sensing using two-dimensional TMDs. The adsorption of the gas\nmolecules on the monolayer surface provides a gateway for gas sensing based on\ncharge-transfer-induced photoluminescence variation. For gases that are weakly\nadsorbed on the surface of monolayer TMDs, purging the monolayers' surface by\nan inert gas like N2 can desorb gases from the monolayers at room temperature.\nWe demonstrate CO, NO and NO2 detection by monitoring photoluminescence from\nsemiconducting MoS2 monolayers grown on SiO2/Si chips at a level of 10 ppm with\nfast response time. Observations are supported by our density functional theory\ncalculations, which predict a significant interaction between these gases and\nMoS2 monolayers. These findings may lead to advances in remote sensing,\nsurface-sensitive bioanalytics and lab-on-a-chip sensors.","PeriodicalId":501214,"journal":{"name":"arXiv - PHYS - Optics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional transition metal dichalcogenides (TMDs) are highly appealing for gas sensors, lab-on-a-chip devices and bio-sensing applications because of their strong light-matter interaction and high surface-to-volume ratio. The ability to grow these van der Waals materials on different substrates and waveguide geometries opens a horizon toward scalable on-chip photonic nanodevices. Here, we report on a versatile technique for real time remote optical gas sensing using two-dimensional TMDs. The adsorption of the gas molecules on the monolayer surface provides a gateway for gas sensing based on charge-transfer-induced photoluminescence variation. For gases that are weakly adsorbed on the surface of monolayer TMDs, purging the monolayers' surface by an inert gas like N2 can desorb gases from the monolayers at room temperature. We demonstrate CO, NO and NO2 detection by monitoring photoluminescence from semiconducting MoS2 monolayers grown on SiO2/Si chips at a level of 10 ppm with fast response time. Observations are supported by our density functional theory calculations, which predict a significant interaction between these gases and MoS2 monolayers. These findings may lead to advances in remote sensing, surface-sensitive bioanalytics and lab-on-a-chip sensors.
利用二维材料进行实时光学气体传感
二维过渡金属二钙化物(TMD)具有很强的光物质相互作用和高表面体积比,因此在气体传感器、片上实验室设备和生物传感应用中极具吸引力。在不同基底和波导几何形状上生长这些范德华材料的能力为实现可扩展的片上光子纳米器件开辟了前景。在此,我们报告了一种利用二维 TMD 进行实时远程光学气体传感的多功能技术。气体分子在单层表面的吸附为基于电荷转移诱导的光致发光变化的气体传感提供了一个途径。对于单层 TMD 表面弱吸附的气体,用 N2 等惰性气体吹扫单层表面可以在室温下从单层中解吸气体。我们通过监测生长在二氧化硅/硅芯片上的半导体 MoS2 单层的光致发光,展示了 CO、NO 和 NO2 的检测方法,检测浓度为 10 ppm,响应速度很快。我们的密度泛函理论计算支持了观察结果,该计算预测这些气体与 MoS2 单层之间存在显著的相互作用。这些发现可能会推动遥感、表面敏感生物分析和片上实验室传感器的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信