Inverse-designed dispersive time-modulated nanostructures

Puneet Garg, Jan David Fischbach, Aristeidis G. Lamprianidis, Xuchen Wang, Mohammad S. Mirmoosa, Viktar S. Asadchy, Carsten Rockstuhl, Thomas J. Sturges
{"title":"Inverse-designed dispersive time-modulated nanostructures","authors":"Puneet Garg, Jan David Fischbach, Aristeidis G. Lamprianidis, Xuchen Wang, Mohammad S. Mirmoosa, Viktar S. Asadchy, Carsten Rockstuhl, Thomas J. Sturges","doi":"arxiv-2409.04551","DOIUrl":null,"url":null,"abstract":"Time-modulated nanostructures allow us to control the spatial and temporal\nproperties of light. The temporal modulation of the nanostructures constitutes\nan additional degree of freedom to control their scattering properties on\ndemand and in a reconfigurable manner. However, these additional parameters\ncreate a vast design space, raising challenges in identifying optimal designs.\nTherefore, tools from the field of photonic inverse design must be used to\noptimize the degrees of freedom of the system to facilitate predefined optical\nresponses. To further develop this field, here we introduce a differentiable\ntransition (T-) matrix-based inverse design framework for dispersive\ntime-modulated nanostructures. The electron density of the material of the\nnanostructures is modulated non-adiabatically as a generic periodic function of\ntime. Using the inverse design framework, the temporal shape of the electron\ndensity can be manipulated to reach the target functionality. Our computational\nframework is exploited, exemplarily, in two instances. First, the decay rate\nenhancement of oscillating dipoles near time-modulated spheres is controlled on\ndemand. Second, using spatiotemporal metasurfaces, a system supporting\nasymmetric transmission of light at visible frequencies is designed. Our work\npaves the way toward programmable spatiotemporal metasurfaces and space-time\ncrystals for a future generation of reconfigurable functional photonic devices.","PeriodicalId":501214,"journal":{"name":"arXiv - PHYS - Optics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Time-modulated nanostructures allow us to control the spatial and temporal properties of light. The temporal modulation of the nanostructures constitutes an additional degree of freedom to control their scattering properties on demand and in a reconfigurable manner. However, these additional parameters create a vast design space, raising challenges in identifying optimal designs. Therefore, tools from the field of photonic inverse design must be used to optimize the degrees of freedom of the system to facilitate predefined optical responses. To further develop this field, here we introduce a differentiable transition (T-) matrix-based inverse design framework for dispersive time-modulated nanostructures. The electron density of the material of the nanostructures is modulated non-adiabatically as a generic periodic function of time. Using the inverse design framework, the temporal shape of the electron density can be manipulated to reach the target functionality. Our computational framework is exploited, exemplarily, in two instances. First, the decay rate enhancement of oscillating dipoles near time-modulated spheres is controlled on demand. Second, using spatiotemporal metasurfaces, a system supporting asymmetric transmission of light at visible frequencies is designed. Our work paves the way toward programmable spatiotemporal metasurfaces and space-time crystals for a future generation of reconfigurable functional photonic devices.
反向设计的色散时间调制纳米结构
时间调制纳米结构使我们能够控制光的空间和时间特性。纳米结构的时间调制构成了一种额外的自由度,可按需以可重新配置的方式控制其散射特性。因此,必须使用光子反向设计领域的工具来优化系统的自由度,以促进预定义的光学响应。为了进一步发展这一领域,我们在此为色散时间调制纳米结构引入了基于可微分转换(T-)矩阵的反设计框架。纳米结构材料的电子密度作为时间的一般周期函数进行非绝热调制。利用反向设计框架,可以操纵电子密度的时间形状,从而实现目标功能。我们的计算框架在两个实例中得到了应用。首先,按需控制时间调制球附近振荡偶极子的衰减率增强。其次,利用时空元曲面,设计了一个支持可见光非对称传输的系统。我们的研究为未来可重构功能光子设备的可编程时空元表面和时空晶体铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信