Hamiltonian System for Three-Dimensional Problem of Two-Dimensional Decagonal Piezoelectric Quasicrystals and Its Symplectic Analytical Solutions

IF 0.7 4区 数学 Q3 MATHEMATICS, APPLIED
Zhiqiang Sun, Guolin Hou, Yanfen Qiao, Jincun Liu
{"title":"Hamiltonian System for Three-Dimensional Problem of Two-Dimensional Decagonal Piezoelectric Quasicrystals and Its Symplectic Analytical Solutions","authors":"Zhiqiang Sun, Guolin Hou, Yanfen Qiao, Jincun Liu","doi":"10.1134/s0965542524700763","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A Hamiltonian system is developed for the three-dimensional (3D) problem of two-dimensional (2D) decagonal piezoelectric quasicrystals via the variational principle. Based on the full state vector and the properties of the Hamiltonian operator matrix, the superposition principle of solutions obtains the symplectic analytical solutions of the problem under simply supported boundary conditions. Numerical examples are illustrated to display the effects of the stacking sequences and material constants on the stresses, displacements, electric potential, and electric displacements under the mechanical and electric displacement loadings. The symplectic analytical solutions presented in the article can be used as a reference for further numerical research.</p>","PeriodicalId":55230,"journal":{"name":"Computational Mathematics and Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Mathematics and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0965542524700763","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

A Hamiltonian system is developed for the three-dimensional (3D) problem of two-dimensional (2D) decagonal piezoelectric quasicrystals via the variational principle. Based on the full state vector and the properties of the Hamiltonian operator matrix, the superposition principle of solutions obtains the symplectic analytical solutions of the problem under simply supported boundary conditions. Numerical examples are illustrated to display the effects of the stacking sequences and material constants on the stresses, displacements, electric potential, and electric displacements under the mechanical and electric displacement loadings. The symplectic analytical solutions presented in the article can be used as a reference for further numerical research.

Abstract Image

二维十边形压电准晶体三维问题的哈密顿体系及其交点解析解
摘要 通过变分原理为二维十边形压电准晶体的三维(3D)问题建立了哈密顿体系。基于全状态矢量和哈密顿算子矩阵的性质,利用解的叠加原理得到了该问题在简单支撑边界条件下的交点解析解。数值示例展示了堆叠序列和材料常数在机械和电位移载荷下对应力、位移、电动势和电位移的影响。文章中给出的折中分析解可作为进一步数值研究的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Mathematics and Mathematical Physics
Computational Mathematics and Mathematical Physics MATHEMATICS, APPLIED-PHYSICS, MATHEMATICAL
CiteScore
1.50
自引率
14.30%
发文量
125
审稿时长
4-8 weeks
期刊介绍: Computational Mathematics and Mathematical Physics is a monthly journal published in collaboration with the Russian Academy of Sciences. The journal includes reviews and original papers on computational mathematics, computational methods of mathematical physics, informatics, and other mathematical sciences. The journal welcomes reviews and original articles from all countries in the English or Russian language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信