Numerical Solution of the Vlasov–Ampère Equations

Pub Date : 2024-09-01 DOI:10.1134/s0965542524700714
E. V. Chizhonkov
{"title":"Numerical Solution of the Vlasov–Ampère Equations","authors":"E. V. Chizhonkov","doi":"10.1134/s0965542524700714","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>An implicit MacCormack-type scheme is constructed for a kinetic plasma model based on the Vlasov–Ampère equations. As compared with the explicit scheme, it has a weaker stability restriction, but preserves computational efficiency, i.e., it does not involve inner iterations. The error of the total energy corresponds to a second-order accurate algorithm, and the total charge (number of particles) is preserved at the grid level. The formation of plasma waves excited by a short intense laser pulse is modeled as an example.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0965542524700714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An implicit MacCormack-type scheme is constructed for a kinetic plasma model based on the Vlasov–Ampère equations. As compared with the explicit scheme, it has a weaker stability restriction, but preserves computational efficiency, i.e., it does not involve inner iterations. The error of the total energy corresponds to a second-order accurate algorithm, and the total charge (number of particles) is preserved at the grid level. The formation of plasma waves excited by a short intense laser pulse is modeled as an example.

Abstract Image

分享
查看原文
弗拉索夫-安培方程的数值解法
摘要 为基于 Vlasov-Ampère 方程的动力学等离子体模型构建了一种隐式 MacCormack 方案。与显式方案相比,它的稳定性限制较弱,但保持了计算效率,即不涉及内部迭代。总能量的误差与二阶精确算法相对应,总电荷(粒子数)在网格级别上得到保留。以短强激光脉冲激发等离子体波的形成为例进行建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信