On the Uniform Convergence of Approximations to the Tangential and Normal Derivatives of the Single-Layer Potential Near the Boundary of a Two-Dimensional Domain
{"title":"On the Uniform Convergence of Approximations to the Tangential and Normal Derivatives of the Single-Layer Potential Near the Boundary of a Two-Dimensional Domain","authors":"D. Yu. Ivanov","doi":"10.1134/s0965542524700623","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Semi-analytical approximations to the tangential derivative (TD) and normal derivative (ND) of the single-layer potential (SLP) near the boundary of a two-dimensional domain, within the framework of the collocation boundary element method and not requiring approximation of the coordinate functions of the boundary, are proposed. To obtain approximations, analytical integration over the smooth component of the distance function and a special additive-multiplicative method for separation of singularities are used. It is proved that such approximations have a more uniform convergence near the domain boundary compared to similar approximations of the TD and ND of SLP based on a simple multiplicative method of separation of singularities. One of the reasons for the highly nonuniform convergence of traditional approximations to TD and ND of SLP based on the Gaussian quadrature formulas is established.</p>","PeriodicalId":55230,"journal":{"name":"Computational Mathematics and Mathematical Physics","volume":"865 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Mathematics and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0965542524700623","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Semi-analytical approximations to the tangential derivative (TD) and normal derivative (ND) of the single-layer potential (SLP) near the boundary of a two-dimensional domain, within the framework of the collocation boundary element method and not requiring approximation of the coordinate functions of the boundary, are proposed. To obtain approximations, analytical integration over the smooth component of the distance function and a special additive-multiplicative method for separation of singularities are used. It is proved that such approximations have a more uniform convergence near the domain boundary compared to similar approximations of the TD and ND of SLP based on a simple multiplicative method of separation of singularities. One of the reasons for the highly nonuniform convergence of traditional approximations to TD and ND of SLP based on the Gaussian quadrature formulas is established.
期刊介绍:
Computational Mathematics and Mathematical Physics is a monthly journal published in collaboration with the Russian Academy of Sciences. The journal includes reviews and original papers on computational mathematics, computational methods of mathematical physics, informatics, and other mathematical sciences. The journal welcomes reviews and original articles from all countries in the English or Russian language.