Modal Statistics in Mode-Division-Multiplexed Systems using Mode Scramblers

Anirudh Vijay, Oleksiy Krutko, Rebecca Refaee, Joseph M. Kahn
{"title":"Modal Statistics in Mode-Division-Multiplexed Systems using Mode Scramblers","authors":"Anirudh Vijay, Oleksiy Krutko, Rebecca Refaee, Joseph M. Kahn","doi":"arxiv-2409.06908","DOIUrl":null,"url":null,"abstract":"Typical multi-mode fibers exhibit strong intra-group mode coupling and weak\ninter-group mode coupling. Mode scramblers can be inserted at periodic\nintervals to enhance inter-group coupling. The deterministic mode coupling of\nthe mode scramblers, in concert with the random mode coupling of the fiber\nspans, can effect strong random mode coupling between all modes. This reduces\nboth modal dispersion and mode-dependent loss, thereby decreasing receiver\ncomplexity and increasing link capacity. In this paper, we analyze the effect\nof mode scramblers on end-to-end group-delay and mode-dependent loss standard\ndeviations in long-haul multi-mode fiber links. We develop analytical tools in\nthe generalized Jones and Stokes representations. We propose design criteria\nfor mode scramblers that ensure strong end-to-end coupling: the\nmode-group-averaged power coupling matrix should be primitive and its\nnon-dominant eigenvalues should be near zero. We argue that when the mode\nscramblers satisfy these criteria, the probability distribution of the system\ntransfer matrix asymptotically approaches that of a system with strong random\nmode coupling between all modes. Consequently, group-delay and mode-dependent\nloss standard deviations become sufficient statistics of the eigenvalues of the\ngroup-delay operator and the modal gains operator, respectively. We also show\nthat under certain conditions on the uncoupled group delays, it is possible to\ndesign self-compensating mode scramblers to reduce group delay accumulation\nbelow that of standard strong random coupling.","PeriodicalId":501214,"journal":{"name":"arXiv - PHYS - Optics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Typical multi-mode fibers exhibit strong intra-group mode coupling and weak inter-group mode coupling. Mode scramblers can be inserted at periodic intervals to enhance inter-group coupling. The deterministic mode coupling of the mode scramblers, in concert with the random mode coupling of the fiber spans, can effect strong random mode coupling between all modes. This reduces both modal dispersion and mode-dependent loss, thereby decreasing receiver complexity and increasing link capacity. In this paper, we analyze the effect of mode scramblers on end-to-end group-delay and mode-dependent loss standard deviations in long-haul multi-mode fiber links. We develop analytical tools in the generalized Jones and Stokes representations. We propose design criteria for mode scramblers that ensure strong end-to-end coupling: the mode-group-averaged power coupling matrix should be primitive and its non-dominant eigenvalues should be near zero. We argue that when the mode scramblers satisfy these criteria, the probability distribution of the system transfer matrix asymptotically approaches that of a system with strong random mode coupling between all modes. Consequently, group-delay and mode-dependent loss standard deviations become sufficient statistics of the eigenvalues of the group-delay operator and the modal gains operator, respectively. We also show that under certain conditions on the uncoupled group delays, it is possible to design self-compensating mode scramblers to reduce group delay accumulation below that of standard strong random coupling.
使用模式扰频器的模式分割多路复用系统中的模式统计
典型的多模光纤表现出较强的组内模式耦合和较弱的组间模式耦合。可以在周期性间隔内插入模式扰频器来增强组间耦合。模式扰频器的确定性模式耦合与光纤跨度的随机模式耦合相结合,可在所有模式之间产生强随机模式耦合。这既降低了模色散,又减少了随模损耗,从而降低了接收器复杂度,提高了链路容量。本文分析了模式扰频器对长途多模光纤链路中端到端群延迟和随模损耗标准差的影响。我们开发了广义琼斯和斯托克斯表示法的分析工具。我们提出了确保端到端强耦合的模式扰频器设计标准:模式群平均功率耦合矩阵应为原始矩阵,其非主导特征值应接近于零。我们认为,当扰频器满足这些标准时,系统传输矩阵的概率分布就会渐近地接近所有模式之间都有强的随机耦合的系统的概率分布。因此,群延迟和模态相关损耗标准偏差分别成为群延迟算子和模态增益算子特征值的充分统计量。我们还证明,在非耦合群延迟的某些条件下,可以设计自补偿模式扰频器,将群延迟累积降低到标准强随机耦合的水平以下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信