Human Motion Synthesis_ A Diffusion Approach for Motion Stitching and In-Betweening

Michael Adewole, Oluwaseyi Giwa, Favour Nerrise, Martins Osifeko, Ajibola Oyedeji
{"title":"Human Motion Synthesis_ A Diffusion Approach for Motion Stitching and In-Betweening","authors":"Michael Adewole, Oluwaseyi Giwa, Favour Nerrise, Martins Osifeko, Ajibola Oyedeji","doi":"arxiv-2409.06791","DOIUrl":null,"url":null,"abstract":"Human motion generation is an important area of research in many fields. In\nthis work, we tackle the problem of motion stitching and in-betweening. Current\nmethods either require manual efforts, or are incapable of handling longer\nsequences. To address these challenges, we propose a diffusion model with a\ntransformer-based denoiser to generate realistic human motion. Our method\ndemonstrated strong performance in generating in-betweening sequences,\ntransforming a variable number of input poses into smooth and realistic motion\nsequences consisting of 75 frames at 15 fps, resulting in a total duration of 5\nseconds. We present the performance evaluation of our method using quantitative\nmetrics such as Frechet Inception Distance (FID), Diversity, and Multimodality,\nalong with visual assessments of the generated outputs.","PeriodicalId":501541,"journal":{"name":"arXiv - CS - Human-Computer Interaction","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Human-Computer Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Human motion generation is an important area of research in many fields. In this work, we tackle the problem of motion stitching and in-betweening. Current methods either require manual efforts, or are incapable of handling longer sequences. To address these challenges, we propose a diffusion model with a transformer-based denoiser to generate realistic human motion. Our method demonstrated strong performance in generating in-betweening sequences, transforming a variable number of input poses into smooth and realistic motion sequences consisting of 75 frames at 15 fps, resulting in a total duration of 5 seconds. We present the performance evaluation of our method using quantitative metrics such as Frechet Inception Distance (FID), Diversity, and Multimodality, along with visual assessments of the generated outputs.
人体运动合成_用于运动缝合和夹缝的扩散方法
人体运动生成是许多领域的一个重要研究领域。在这项工作中,我们解决了运动拼接和中间处理的问题。目前的方法要么需要人工操作,要么无法处理较长的序列。为了应对这些挑战,我们提出了一种扩散模型,并使用基于变换器的去噪器来生成逼真的人体运动。我们的方法在生成中间序列方面表现出很强的性能,可将不同数量的输入姿势转换成平滑逼真的运动序列,包括 75 帧、15 帧/秒,总时长为 5 秒。我们使用弗雷谢特起始距离(FID)、多样性和多模态等定量指标对我们的方法进行了性能评估,并对生成的输出结果进行了视觉评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信