Celcomen: spatial causal disentanglement for single-cell and tissue perturbation modeling

Stathis Megas, Daniel G. Chen, Krzysztof Polanski, Moshe Eliasof, Carola-Bibiane Schonlieb, Sarah A. Teichmann
{"title":"Celcomen: spatial causal disentanglement for single-cell and tissue perturbation modeling","authors":"Stathis Megas, Daniel G. Chen, Krzysztof Polanski, Moshe Eliasof, Carola-Bibiane Schonlieb, Sarah A. Teichmann","doi":"arxiv-2409.05804","DOIUrl":null,"url":null,"abstract":"Celcomen leverages a mathematical causality framework to disentangle intra-\nand inter- cellular gene regulation programs in spatial transcriptomics and\nsingle-cell data through a generative graph neural network. It can learn\ngene-gene interactions, as well as generate post-perturbation counterfactual\nspatial transcriptomics, thereby offering access to experimentally inaccessible\nsamples. We validated its disentanglement, identifiability, and counterfactual\nprediction capabilities through simulations and in clinically relevant human\nglioblastoma, human fetal spleen, and mouse lung cancer samples. Celcomen\nprovides the means to model disease and therapy induced changes allowing for\nnew insights into single-cell spatially resolved tissue responses relevant to\nhuman health.","PeriodicalId":501572,"journal":{"name":"arXiv - QuanBio - Tissues and Organs","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Tissues and Organs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Celcomen leverages a mathematical causality framework to disentangle intra- and inter- cellular gene regulation programs in spatial transcriptomics and single-cell data through a generative graph neural network. It can learn gene-gene interactions, as well as generate post-perturbation counterfactual spatial transcriptomics, thereby offering access to experimentally inaccessible samples. We validated its disentanglement, identifiability, and counterfactual prediction capabilities through simulations and in clinically relevant human glioblastoma, human fetal spleen, and mouse lung cancer samples. Celcomen provides the means to model disease and therapy induced changes allowing for new insights into single-cell spatially resolved tissue responses relevant to human health.
Celcomen:用于单细胞和组织扰动建模的空间因果解缠技术
Celcomen 利用数学因果关系框架,通过生成图神经网络,将空间转录组学和单细胞数据中的细胞内和细胞间基因调控程序分开。它可以学习基因与基因之间的相互作用,并生成扰动后的反事实空间转录组学,从而提供实验无法获取的样本。我们通过模拟和临床相关的颅胶质母细胞瘤、人类胎儿脾脏和小鼠肺癌样本验证了它的解缠、可识别性和反事实预测能力。Celcomen 提供了对疾病和治疗诱导的变化进行建模的方法,使我们能够对与人类健康相关的单细胞空间分辨组织反应有新的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信