Pêdra D. S. Andrade, João Vitor da Silva, Giane C. Rampasso, Makson S. Santos
{"title":"Sharp Regularity Estimates for a Singular Inhomogeneous (m, p)-Laplacian Equation","authors":"Pêdra D. S. Andrade, João Vitor da Silva, Giane C. Rampasso, Makson S. Santos","doi":"10.1007/s11118-024-10164-2","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate a class of doubly nonlinear evolutions PDEs. We establish sharp regularity for the solutions in Hölder spaces. The proof is based on the geometric tangential method and intrinsic scaling technique. Our findings extend and recover the results in the context of the classical evolution PDEs with singular signature via a unified treatment in the slow, normal and fast diffusion regimes. In addition, we provide some applications to certain nonlinear evolution models, which may have their own mathematical interest.</p>","PeriodicalId":49679,"journal":{"name":"Potential Analysis","volume":"19 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Potential Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11118-024-10164-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we investigate a class of doubly nonlinear evolutions PDEs. We establish sharp regularity for the solutions in Hölder spaces. The proof is based on the geometric tangential method and intrinsic scaling technique. Our findings extend and recover the results in the context of the classical evolution PDEs with singular signature via a unified treatment in the slow, normal and fast diffusion regimes. In addition, we provide some applications to certain nonlinear evolution models, which may have their own mathematical interest.
期刊介绍:
The journal publishes original papers dealing with potential theory and its applications, probability theory, geometry and functional analysis and in particular estimations of the solutions of elliptic and parabolic equations; analysis of semi-groups, resolvent kernels, harmonic spaces and Dirichlet forms; Markov processes, Markov kernels, stochastic differential equations, diffusion processes and Levy processes; analysis of diffusions, heat kernels and resolvent kernels on fractals; infinite dimensional analysis, Gaussian analysis, analysis of infinite particle systems, of interacting particle systems, of Gibbs measures, of path and loop spaces; connections with global geometry, linear and non-linear analysis on Riemannian manifolds, Lie groups, graphs, and other geometric structures; non-linear or semilinear generalizations of elliptic or parabolic equations and operators; harmonic analysis, ergodic theory, dynamical systems; boundary value problems, Martin boundaries, Poisson boundaries, etc.