On the strength of Lagrangian duality in multiobjective integer programming

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Matthew Brun, Tyler Perini, Saumya Sinha, Andrew J. Schaefer
{"title":"On the strength of Lagrangian duality in multiobjective integer programming","authors":"Matthew Brun, Tyler Perini, Saumya Sinha, Andrew J. Schaefer","doi":"10.1007/s10107-024-02121-z","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates the potential of Lagrangian relaxations to generate quality bounds on non-dominated images of multiobjective integer programs (MOIPs). Under some conditions on the relaxed constraints, we show that a set of Lagrangian relaxations can provide bounds that coincide with every bound generated by the convex hull relaxation. We also provide a guarantee of the relative quality of the Lagrangian bound at unsupported solutions. These results imply that, if the relaxed feasible region is bounded, some Lagrangian bounds will be strictly better than some convex hull bounds. We demonstrate that there exist Lagrangian multipliers which are sparse, satisfy a complementary slackness property, and generate tight relaxations at supported solutions. However, if all constraints are dualized, a relaxation can never be tight at an unsupported solution. These results characterize the strength of the Lagrangian dual at efficient solutions of an MOIP.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10107-024-02121-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the potential of Lagrangian relaxations to generate quality bounds on non-dominated images of multiobjective integer programs (MOIPs). Under some conditions on the relaxed constraints, we show that a set of Lagrangian relaxations can provide bounds that coincide with every bound generated by the convex hull relaxation. We also provide a guarantee of the relative quality of the Lagrangian bound at unsupported solutions. These results imply that, if the relaxed feasible region is bounded, some Lagrangian bounds will be strictly better than some convex hull bounds. We demonstrate that there exist Lagrangian multipliers which are sparse, satisfy a complementary slackness property, and generate tight relaxations at supported solutions. However, if all constraints are dualized, a relaxation can never be tight at an unsupported solution. These results characterize the strength of the Lagrangian dual at efficient solutions of an MOIP.

Abstract Image

论多目标整数编程中拉格朗日对偶性的强度
本文研究了拉格朗日松弛在生成多目标整数程序(MOIP)非主图像质量约束方面的潜力。在松弛约束的某些条件下,我们证明了一组拉格朗日松弛可以提供与凸壳松弛产生的每个约束重合的约束。我们还为无支撑解的拉格朗日约束的相对质量提供了保证。这些结果意味着,如果松弛的可行区域是有界的,那么某些拉格朗日约束将严格优于某些凸壳约束。我们证明,存在稀疏的、满足互补松弛特性的拉格朗日乘子,并能在有支撑解处产生紧松弛。然而,如果所有约束条件都是二元化的,那么在无支撑解处的松弛就永远不会紧密。这些结果说明了在 MOIP 的有效解中拉格朗日对偶的强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信