Convexification techniques for fractional programs

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Taotao He, Siyue Liu, Mohit Tawarmalani
{"title":"Convexification techniques for fractional programs","authors":"Taotao He, Siyue Liu, Mohit Tawarmalani","doi":"10.1007/s10107-024-02131-x","DOIUrl":null,"url":null,"abstract":"<p>This paper develops a correspondence relating convex hulls of fractional functions with those of polynomial functions over the same domain. Using this result, we develop a number of new reformulations and relaxations for fractional programming problems. First, we relate <span>\\(0\\mathord {-}1\\)</span> problems involving a ratio of affine functions with the boolean quadric polytope, and use inequalities for the latter to develop tighter formulations for the former. Second, we derive a new formulation to optimize a ratio of quadratic functions over a polytope using copositive programming. Third, we show that univariate fractional functions can be convexified using moment hulls. Fourth, we develop a new hierarchy of relaxations that converges finitely to the simultaneous convex hull of a collection of ratios of affine functions of <span>\\(0\\mathord {-}1\\)</span> variables. Finally, we demonstrate theoretically and computationally that our techniques close a significant gap relative to state-of-the-art relaxations, require much less computational effort, and can solve larger problem instances.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10107-024-02131-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper develops a correspondence relating convex hulls of fractional functions with those of polynomial functions over the same domain. Using this result, we develop a number of new reformulations and relaxations for fractional programming problems. First, we relate \(0\mathord {-}1\) problems involving a ratio of affine functions with the boolean quadric polytope, and use inequalities for the latter to develop tighter formulations for the former. Second, we derive a new formulation to optimize a ratio of quadratic functions over a polytope using copositive programming. Third, we show that univariate fractional functions can be convexified using moment hulls. Fourth, we develop a new hierarchy of relaxations that converges finitely to the simultaneous convex hull of a collection of ratios of affine functions of \(0\mathord {-}1\) variables. Finally, we demonstrate theoretically and computationally that our techniques close a significant gap relative to state-of-the-art relaxations, require much less computational effort, and can solve larger problem instances.

Abstract Image

分数程序的凸化技术
本文提出了分式函数的凸壳与同一域上多项式函数的凸壳之间的对应关系。利用这一结果,我们为分式编程问题开发了许多新的重构和松弛方法。首先,我们将涉及仿射函数之比的\(0\mathord {-}1\)问题与布尔二次多面体联系起来,并利用后者的不等式为前者建立了更严密的公式。其次,我们推导出一种新的公式,利用共正编程优化多面体上的二次函数之比。第三,我们证明了单变量分式函数可以利用矩壳进行凸化。第四,我们开发了一种新的松弛层次,它可以有限地收敛到 \(0\mathord {-}1\) 变量的仿射函数比率集合的同时凸壳。最后,我们从理论和计算上证明,我们的技术与最先进的松弛技术相比缩小了很大差距,所需的计算量也小得多,而且可以解决更大的问题实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信